EDS 223: Geospatial Analysis \& Remote Sensing

Course website

https://ryoliver.github.io/EDS_223_spatial_analysis/

Contents
Welcome to EDS 223
Teaching team
Important links
Weekly course schedule
Course requirements
Tentative topics

Figure 1: Image: Mississippi River south of Memphis, TN. from USGS shared on Unsplash (httpp:///unsplash.com/photos/35z2ylLRCO8).

Welcome!

- Introductions

Welcome!

- Introductions
- Course logistics + overview

Welcome!

- Introductions
- Course logistics + overview
- Models of our world

Welcome!

- Introductions
- Course logistics + overview
- Models of our world
- Map making in R

Instruction team

- Ruth Oliver
- Email: rutholiver@bren.ucsb.edu
- Office: Bren Hall 4512
- Student hours: Friday 3-4 @ Bren
- Contact me via: email
- Allie Caughman
- Email: acaughman@bren.ucsb.edu
- Student hours: Tuesday 12:30-1:30 @Bren
- Contact me via: email

Introductions

- Name
- Pronouns
- Program

Growth mindset

Growth mindset

Growth mindset

Typos are the pedagogy.
 - Emily Jane McTavish

Course logistics

ryoliver.github.io/EDS_223_spatial_analysis

Why spatial?

Everything is related to everything else, but near things are more.
 - Waldo Tobler

We live in space, and so does everything else

We live in space, and so does everything else

Our approach

R

(very, very) Brief intro to remote sensing

Models of our world

Models of our world

A non-historian's brief history of North

A non-historian's brief history of North

Recreation of Moroccan cartographer's Muhammad al-Idrisi's Tabula Rogeriana (1154)

Source: Bibliotheque nationale de France/Wikipedia

A non-historian's brief history of North

Recreation of map (1407) based on the work of Ptolemy (c. 100-178)

A non-historian's brief history of North

We need a system!

4 (main) challenges to spatial analysis

4 (main) challenges to spatial analysis

1. We perceive geography in two dimensions, but live in three

4 (main) challenges to spatial analysis

1. We perceive geography in two dimensions, but live in three
2. Earth is irregular

4 (main) challenges to spatial analysis

1. We perceive geography in two dimensions, but live in three
2. Earth is irregular
3. Measurements are imperfect

4 (main) challenges to spatial analysis

1. We perceive geography in two dimensions, but live in three
2. Earth is irregular
3. Measurements are imperfect
4. Earth's surface is constantly changing

4 (main) challenges to spatial analysis

1. We perceive geography in two dimensions, but live in three
2. Earth is irregular
3. Measurements are imperfect
4. Earth's surface is constantly changing

We need a system!

- Coordinate system
- Datum
- Geodetic datum

Coordinate reference system

We need a system!

- Coordinate system
- Datum
- Geodetic datum

Coordinate reference system

We need a system!

- Coordinate system
- Datum
- Geodetic datum

Coordinate reference system

We need a system!

- Coordinate system
- Datum
- Geodetic datum

Coordinate reference system

4 (main) challenges to spatial analysis

1. We perceive geography in two dimensions, but live in three
2. Earth is irregular
3. Measurements are imperfect
4. Earth's surface is constantly changing

Coordinate system

- A set of mathematical rules for specifying how coordinates are to be assigned to points (Lott 2015)

Coordinate system

- A set of mathematical rules for specifying how coordinates are to be assigned to points
- Language to talk about locations

Coordinate system

- A set of mathematical rules for specifying how coordinates are to be assigned to points
- Language to talk about locations

Coordinate system

- A set of mathematical rules for specifying how coordinates are to be assigned to points
- Language to talk about locations

Coordinate system

- A set of mathematical rules for specifying how coordinates are to be assigned to points
- Language to talk about locations

Coordinate system

- A set of mathematical rules for specifying how coordinates are to be assigned to points
- Language to talk about locations
- 3 major ways to think about this:
- planar vs. polar

Coordinate system

- A set of mathematical rules for specifying how coordinates are to be assigned to points
- Language to talk about locations
- 3 major ways to think about this:
- planar vs. polar
- 2D vs.3D

Coordinate system

- A set of mathematical rules for specifying how coordinates are to be assigned to points
- Language to talk about locations
- 3 major ways to think about this:
- planar vs. polar
- 2Dvs.3D
- spherical vs. ellipsoidal

Coordinate system

- A set of mathematical rules for specifying how coordinates are to be assigned to points
- Language to talk about locations
- 3 major ways to think about this:
- planar vs. polar
- 2Dvs.3D
- spherical vs. ellipsoidal

Coordinate systems

- Planar (or Cartesian) coordinates
- Define points as a pair of numbers that specify signed distances from coordinate axes

Coordinate systems

- Planar (or Cartesian) coordinates
- Define points as a pair of numbers that specify signed distances from coordinate axes
- Polar coordinates
- Define points by a distance from a reference point and angle from a reference direction

Coordinate systems

- Planar (or Cartesian) coordinates
- Define points as a pair of numbers that specify signed distances from coordinate axes
- Polar coordinates
- Define points by a distance from a reference point and angle from a reference direction

Coordinate systems

- Planar (or Cartesian) coordinates
- Define points as a pair of numbers that specify signed distances from coordinate axes
- Polar coordinates
- Define points by a distance from a reference point and angle from a reference direction

Coordinate systems

- Planar (or Cartesian) coordinates
- Define points as a pair of numbers that specify signed distances from coordinate axes
- Polar coordinates
- Define points by a distance from a reference point and angle from a reference direction

Coordinate systems

- Planar (or Cartesian) coordinates
- Define points as a pair of numbers that specify signed distances from coordinate axes
- Polar coordinates
- Define points by a distance from a reference point and angle from a reference direction

Coordinate systems

- Planar (or Cartesian) coordinates
- Define points as a pair of numbers that specify signed distances from coordinate axes
- Polar coordinates
- Define points by a distance from a reference point and angle from a reference direction

φ

Coordinate systems

- Planar (or Cartesian) coordinates
- Define points as a pair of numbers that specify signed distances from coordinate axes
- Polar coordinates
- Define points by a distance from a reference point and angle from a reference direction

Coordinate systems

- Planar (or Cartesian) coordinates
- Define points as a pair of numbers that specify signed distances from coordinate axes
- Polar coordinates
- Define points by a distance from a reference point and angle from a reference direction

Coordinate system

- A set of mathematical rules for specifying how coordinates are to be assigned to points (Lott 2015)
- Language to talk about locations
- 3 major ways to think about this:
- planar vs. polar
- 2D vs. 3D
- spherical vs. ellipsoidal

Coordinate systems

- Planar (or Cartesian) coordinates
- Define points as a pair of numbers that specify signed distances from coordinate axes
- Polar coordinates
- Define points by a distance from a reference point and angle from a reference direction
- What do we need to update?

Coordinate systems

- Planar (or Cartesian) coordinates
- Define points as a pair of numbers that specify signed distances from coordinate axes
- Polar coordinates
- Define points by a distance from a reference point and angle from a reference direction

Coordinate systems

- Planar (or Cartesian) coordinates
- Define points as a pair of numbers that specify signed distances from coordinate axes
- Polar coordinates
- r is the radius of the sphere
- λ angle measured between the point and z plane
- φ angle measured between the point and the (x, y) plane

Coordinate systems

- Planar (or Cartesian) coordinates
- Define points as a pair of numbers that specify signed distances from coordinate axes
- Polar coordinates
- r is the radius of the sphere
- λ angle measured between the point and z plane
- φ angle measured between the point and the (x, y) plane

Coordinate systems

- Planar (or Cartesian) coordinates
- Define points as a pair of numbers that specify signed distances from coordinate axes
- Polar coordinates
- r is the radius of the sphere
- λ longitude
- φ latitude

Mini latitude/longitude refresher

Mini latitude/longitude refresher

- Latitude
- ranges from -90 to 90
- "y"
- Parallel
- Longitude
- ranges from -180 to 180
- "x"
- converge

Coordinate system

- A set of mathematical rules for specifying how coordinates are to be assigned to points (Lott 2015)
- Language to talk about locations
- 3 major ways to think about this:
- planar vs. polar
- 2Dvs.3D
- spherical vs. ellipsoidal

4 (main) challenges to spatial analysis

1. We perceive geography in two dimensions, but live in three
2. Earth is irregular
3. Measurements are imperfect
4. Earth's surface is constantly changing

Coordinate system

We need a system!

- Coordinate system
- A set of mathematical rules for specifying how coordinates are to be assigned to points
- Datum
- Geodetic datum

Coordinate reference system

We need a system!

- Coordinate system
- A set of mathematical rules for specifying how coordinates are to be assigned to points
- Datum
- Geodetic datum

Coordinate reference system

How are we feeling?

We need a system!

- Coordinate system
- A set of mathematical rules for specifying how coordinates are to be assigned to points
- Datum
- Geodetic datum

Coordinate reference system

Datum

- A parameter or set of parameters that define the position of the origin, the scale, and the orientation of a coordinate system (Lott 2015)

Datum

- A parameter or set of parameters that define the position of the origin, the scale, and the orientation of a coordinate system

Datum

- A parameter or set of parameters that define the position of the origin, the scale, and the orientation of a coordinate system

Datum

- A parameter or set of parameters that define the position of the origin, the scale, and the orientation of a coordinate system

Datum

- A parameter or set of parameters that define the position of the origin, the scale, and the orientation of a coordinate system

Datum

- A parameter or set of parameters that define the position of the origin, the scale, and the orientation of a coordinate system

Datum

- A parameter or set of parameters that define the position of the origin, the scale, and the orientation of a coordinate system

We need a system!

- Coordinate system
- A set of mathematical rules for specifying how coordinates are to be assigned to points
- Datum
- A parameter or set of parameters that define the position of the origin, the scale, and the orientation of a coordinate system
- Geodetic datum

Coordinate reference system

We need a system!

- Coordinate system
- A set of mathematical rules for specifying how coordinates are to be assigned to points
- Datum
- A parameter or set of parameters that define the position of the origin, the scale, and the orientation of a coordinate system
- Geodetic datum

Coordinate reference system

We need a system!

- Coordinate system
- A set of mathematical rules for specifying how coordinates are to be assigned to points
- Datum
- A parameter or set of parameters that define the position of the origin, the scale, and the orientation of a coordinate system
Geodetic datum

Coordinate reference system

Geodetic datum

- A datum describing the relationship of a two- or three- dimensional coordinate system to Earth (Lott 2015)

Geodetic datum

Geodetic datum

Geodetic datum

Geodetic datum

Geodetic datum

Geodetic datum

Geodetic datum

Coordinate reference systems

What does this look like in the real world?

Coordinate reference systems

What does this look like in the real world?

Coordinate reference systems

What does this look like in the real world?

$134.577^{\circ} \mathrm{E}, 24.006^{\circ} \mathrm{S}$

Coordinate reference systems

What does this look like in the real world?

$134.577^{\circ} \mathrm{E}, 24.006^{\circ} \mathrm{S}$

Australian Geodetic Datum 1984

We need a system!

- Coordinate system
- A set of mathematical rules for specifying how coordinates are to be assigned to points
- Datum
- A parameter or set of parameters that define the position of the origin, the scale, and the orientation of a coordinate system
- Geodetic datum
- A datum describing the relationship of a two- or three- dimensional coordinate system to Earth

Coordinate reference system

We need a system!

- Coordinate system
- A set of mathematical rules for specifying how coordinates are to be assigned to points
- Datum
- A parameter or set of parameters that define the position of the origin, the scale, and the orientation of a coordinate system
- Geodetic datum
- A datum describing the relationship of a two- or three- dimensional coordinate system to Earth

Coordinate reference system

How are we feeling?

Coordinate reference system

- A framework to measure locations on Earth as coordinates

Coordinate reference system

- Framework to measure locations on Earth as coordinates
- A specific CRS comprises the following:
- Earth ellipsoid
- Geodetic datum
- Origin point
- Unit of measure
- Map projection (in most but not all cases)

4 challenges to spatial analysis

1. We perceive geography in two dimensions, but live in three
2. Earth is irregular
3. Measurements are imperfect
4. Earth's surface is constantly changing

Projection

- Mathematical transformation employed to translate a curved surface of a globe on a two-dimensional plane

All maps are wrong

Projections

Projections

Projections

Projections

Geographic vs. projected coordinate system

Geographic

Defines where the data is located on Earth

3D
Describes locations as angles

Geographic vs. projected coordinate system

Geographic	Projected
Defines where the data is located on Earth	Provides instructions on how to draw the data onto a flat surface
3D	2D
Describes locations as angles	Describes locations in linear units

Geographic vs. projected coordinate system

- A PCS is a GCS that has been flattened using a map projection

Geographic vs. projected coordinate system

- A PCS is a GCS that has been flattened using a map projection
- You can store data in a GCS, but you can't draw it on a flat map without a PCS

Geographic vs. projected coordinate system

- A PCS is a GCS that has been flattened using a map projection
- You can store data in a GCS, but you can't draw it on a flat map without a PCS
- Picking a GCS depends on where you are mapping

Geographic vs. projected coordinate system

- A PCS is a GCS that has been flattened using a map projection
- You can store data in a GCS, but you can't draw it on a flat map without a PCS
- Picking a GCS depends on where you are mapping
- Picking a PCS depends on where you are mapping AND the nature of the map you want to make

Projections

- Distortion is inevitable, so it's all about compromise
- Properties
- Area
- Form
- Distance
- Direction

Projections

Changing between projections using the same datum and version:

```
Projected coordinate system
UTM WGS84(G1762), zone 15
```

```
Projected coordinate system
lowa State Plane North,
WGS84(G1762)
```


Projections

Changing between projections using the same datum and version:

Projections

Changing between projections using the same datum and version:

Projections

Changing between projections using different datums:

Projected coordinate system
UTM WGS84(G1762), zone 15

Projected coordinate system
Iowa State Plane North, NAD83(2011)

Projections

Changing between projections using different datums:

```
Projected coordinate system
UTM WGS84(G1762), zone 15
```

Projected coordinate system
Iowa State Plane North, NAD83(2011)

Projections

Changing between projections using different datums:

Projections

Changing between projections using different datums:

Summary

- Coordinate reference systems

Summary

- Coordinate reference systems
- Coordinate systems

Summary

- Coordinate reference systems
- Coordinate systems
- Datums and geodetic datums

Summary

- Coordinate reference systems
- Coordinate systems
- Datums and geodetic datums
- Projections

Summary

- Coordinate reference systems
- Coordinate systems
- Datums and geodetic datums
- Projections
- Geographic vs. projected coordinate systems

Summary

- Coordinate reference systems
- Coordinate systems
- Datums and geodetic datums
- Projections
- Geographic vs. projected coordinate systems
- Basic trade-offs in projections

Summary

- Coordinate reference systems

Language for describing locations

- Coordinate systems
\circ Datums and geodetic datums \longrightarrow Working model of Earth
- Projections

Translation from 3D to 2D

- Geographic vs. projected coordinate systems
- Basic trade-offs in projections

Summary

- Coordinate reference systems \qquad Language for describing locations
- Coordinate systems
\bigcirc Datums and geodetic datums \longrightarrow Working model of Earth
- Projections

Translation from 3D to 2D

- Geographic vs. projected coordinate systems
- Basic trade-offs in projections
- North isn't up and all maps are wrong!

How are we feeling?

BREAK

Plan for today?

Jane Oliver

Curriculum Development Consultant

Pedagogical aspiration
"On my first day of school I felt excited to be here"

Assignment 1

US EPA definition of environmental justice:

Environmental Topics $\checkmark \quad$ Laws \& Regulations \checkmark
Report a Violation \checkmark
About EPA V

CONTACT US
EJScreen: Environmental Justice Screening and Mapping Tool

In order to better meet the Agency's responsibilities related to the protection of public health and the environment, EPA has developed a new environmental justice (EJ) mapping and screening tool called EJScreen. It is based on nationally consistent data and an approach that combines environmental and demographic indicators in maps and reports. Learn more about Environmental Justice at EPA.

