# EDS 223: Geospatial Analysis & Remote Sensing



# **Course website**

# https://ryoliver.github.io/EDS\_223\_spatial\_analysis/

Topics

Hon

A signments Resources 🖓

# Geospatial Analysis & Remote Sensing

Master's of Environmental Data Science, UC Santa Barbara

#### Contents

Welcome to EDS 223 Teaching team Important links Weekly course schedule Course requirements Tentative topics



Figure 1: Image: Mississippi River south of Memphis, TN, from USGS shared on Unsplash (https://unsplash.com/photos/35Z2yLRCO8)

#### Welcome to EDS 223



• Introductions

- Introductions
- Course logistics + overview

- Introductions
- Course logistics + overview
- Models of our world

- Introductions
- Course logistics + overview
- Models of our world
- Map making in R

# Instruction team

#### • Ruth Oliver

- Email: rutholiver@bren.ucsb.edu
- Office: Bren Hall 4512
- Student hours: Friday 3-4 @ Bren
- Contact me via: email

#### • Allie Caughman

- Email: <u>acaughman@bren.ucsb.edu</u>
- Student hours: Tuesday 12:30-1:30 @Bren
- Contact me via: email

# Introductions

- Name
- Pronouns
- Program



## Growth mindset



## Growth mindset





# Growth mindset





# Typos are the pedagogy. - Emily Jane McTavish

# **Course logistics**

#### ryoliver.github.io/EDS\_223\_spatial\_analysis

# Why spatial?

# Everything is related to everything else, but near things are more. - Waldo Tobler

#### We live in space, and so does everything else



#### We live in space, and so does everything else









## (very, very) Brief intro to remote sensing



Photo credit: ESA

### Models of our world



Photo credit: Wikipedia

# Models of our world



Recreation of Moroccan cartographer's Muhammad al-Idrisi's Tabula Rogeriana (1154)



Source: Bibliotheque nationale de France/Wikipedia

Recreation of map (1407) based on the work of Ptolemy (c. 100-178)



Source: The British Library Board/Getty Images





1. We perceive geography in two dimensions, but live in three

- 1. We perceive geography in two dimensions, but live in three
- 2. Earth is irregular

- 1. We perceive geography in two dimensions, but live in three
- 2. Earth is irregular
- 3. Measurements are imperfect

- 1. We perceive geography in two dimensions, but live in three
- 2. Earth is irregular
- 3. Measurements are imperfect
- 4. Earth's surface is constantly changing

- 1. We perceive geography in two dimensions, but live in three
- 2. Earth is irregular
- 3. Measurements are imperfect
- 4. Earth's surface is constantly changing

- Coordinate system
- DatumGeodetic datum

- Coordinate system
- Datum
- Geodetic datum



- Coordinate system
- Datum
- Geodetic datum



- Coordinate system
- DatumGeodetic datum
# 4 (main) challenges to spatial analysis

- 1. We perceive geography in two dimensions, but live in three
- 2. Earth is irregular
- 3. Measurements are imperfect
- 4. Earth's surface is constantly changing

• A set of mathematical rules for specifying how coordinates are to be assigned to points (Lott 2015)

- A set of mathematical rules for specifying how coordinates are to be assigned to points
  - Language to talk about locations

- A set of mathematical rules for specifying how coordinates are to be assigned to points
  - Language to talk about locations



- A set of mathematical rules for specifying how coordinates are to be assigned to points
  - Language to talk about locations



- A set of mathematical rules for specifying how coordinates are to be assigned to points
  - Language to talk about locations



- A set of mathematical rules for specifying how coordinates are to be assigned to points
  - Language to talk about locations

- 3 major ways to think about this:
  - planar vs. polar

- A set of mathematical rules for specifying how coordinates are to be assigned to points
  - Language to talk about locations

- 3 major ways to think about this:
  - planar vs. polar
  - 2D vs. 3D

- A set of mathematical rules for specifying how coordinates are to be assigned to points
  - Language to talk about locations

- 3 major ways to think about this:
  - planar vs. polar
  - 2D vs. 3D
  - spherical vs. ellipsoidal

- A set of mathematical rules for specifying how coordinates are to be assigned to points
  - Language to talk about locations

- 3 major ways to think about this:
  - planar vs. polar
  - 2D vs. 3D
  - spherical vs. ellipsoidal

### • Planar (or Cartesian) coordinates

• Define points as a pair of numbers that specify signed distances from coordinate axes

### • Planar (or Cartesian) coordinates

• Define points as a pair of numbers that specify signed distances from coordinate axes

#### • Polar coordinates

• Define points by a distance from a reference point and angle from a reference direction

### • Planar (or Cartesian) coordinates

• Define points as a pair of numbers that specify signed distances from coordinate axes

#### • Polar coordinates

• Define points by a distance from a reference point and angle from a reference direction

### • Planar (or Cartesian) coordinates

- Define points as a **pair of numbers** that specify **signed distances from coordinate axes**
- Polar coordinates
  - Define points by a distance from a reference point and angle from a reference direction

#### • Planar (or Cartesian) coordinates

• Define points as a **pair of numbers** that specify **signed distances from coordinate axes** 

#### • Polar coordinates

• Define points by a distance from a reference point and angle from a reference direction



Modified from: Spatial Data Science, chapter 2

#### • Planar (or Cartesian) coordinates

• Define points as a **pair of numbers** that specify **signed distances from coordinate axes** 

#### • Polar coordinates

• Define points by a distance from a reference point and angle from a reference direction



Modified from: Spatial Data Science, chapter 2

### • Planar (or Cartesian) coordinates

• Define points as a **pair of numbers** that specify **signed distances from coordinate axes** 

#### • Polar coordinates

• Define points by a **distance** from a reference point and **angle** from a reference direction



Modified from: Spatial Data Science, chapter 2

### • Planar (or Cartesian) coordinates

• Define points as a **pair of numbers** that specify **signed distances from coordinate axes** 

#### • Polar coordinates

• Define points by a **distance** from a reference point and **angle** from a reference direction



Modified from: Spatial Data Science, chapter 2

#### • Planar (or Cartesian) coordinates

• Define points as a **pair of numbers** that specify **signed distances from coordinate axes** 

#### • Polar coordinates

• Define points by a **distance** from a reference point and **angle** from a reference direction



Modified from: Spatial Data Science, chapter 2

- A set of mathematical rules for specifying how coordinates are to be assigned to points (Lott 2015)
  - Language to talk about locations

- 3 major ways to think about this:
  - planar vs. polar
  - **2D vs. 3D**
  - spherical vs. ellipsoidal

### • Planar (or Cartesian) coordinates

• Define points as a pair of numbers that specify signed distances from coordinate axes

#### • Polar coordinates

- Define points by a distance from a reference point and angle from a reference direction
  - What do we need to update?

### • Planar (or Cartesian) coordinates

• Define points as a pair of numbers that specify signed distances from coordinate axes

#### • Polar coordinates

• Define points by a distance from a reference point and angle from a reference direction



### • Planar (or Cartesian) coordinates

• Define points as a pair of numbers that specify signed distances from coordinate axes

### • Polar coordinates

- r is the radius of the sphere
- $\circ ~~\lambda$  angle measured between the point and z plane
- $\circ \quad arphi$  angle measured between the point and the (x,y) plane



### • Planar (or Cartesian) coordinates

• Define points as a pair of numbers that specify signed distances from coordinate axes

### • Polar coordinates

- r is the radius of the sphere
- $\circ$   $\lambda$  angle measured between the point and z plane
- $\circ \quad arphi$  angle measured between the point and the (x,y) plane

Do these sound familiar?



### • Planar (or Cartesian) coordinates

• Define points as a pair of numbers that specify signed distances from coordinate axes

#### • Polar coordinates

- r is the radius of the sphere
- λ longitude
- $\circ \phi$  latitude



### Mini latitude/longitude refresher



# Mini latitude/longitude refresher

#### • Latitude

- $\circ$  ranges from -90 to 90
- o "y"
- Parallel

### • Longitude

- $\circ$  ranges from -180 to 180
- "X"
- converge



- A set of mathematical rules for specifying how coordinates are to be assigned to points (Lott 2015)
  - Language to talk about locations

- 3 major ways to think about this:
  - planar vs. polar
  - o 2D vs. 3D
  - spherical vs. ellipsoidal

# 4 (main) challenges to spatial analysis

- 1. We perceive geography in two dimensions, but live in three
- 2. Earth is irregular
- 3. Measurements are imperfect
- 4. Earth's surface is constantly changing



# We need a system!

- Coordinate system
  - A set of mathematical rules for specifying how coordinates are to be assigned to points
- Datum
- Geodetic datum

### **Coordinate reference system**

# We need a system!

- Coordinate system
  - A set of mathematical rules for specifying how coordinates are to be assigned to points
- Datum
- Geodetic datum

### **Coordinate reference system**

# How are we feeling?



# We need a system!

- Coordinate system
  - A set of mathematical rules for specifying how coordinates are to be assigned to points

#### • Datum

• Geodetic datum

### **Coordinate reference system**

### Datum

• A parameter or set of parameters that define the position of the origin, the scale, and the orientation of a coordinate system (Lott 2015)

### Datum

• A parameter or set of parameters that define the position of the origin, the scale, and the orientation of a coordinate system



### Datum

• A parameter or set of parameters that define the position of the origin, the scale, and the orientation of a coordinate system










- Coordinate system
  - A set of mathematical rules for specifying how coordinates are to be assigned to points

#### • Datum

- A parameter or set of parameters that define the position of the origin, the scale, and the orientation of a coordinate system
- Geodetic datum

- Coordinate system
  - A set of mathematical rules for specifying how coordinates are to be assigned to points

#### • Datum

- A parameter or set of parameters that define the position of the origin, the scale, and the orientation of a coordinate system
- Geodetic datum

- Coordinate system
  - A set of mathematical rules for specifying how coordinates are to be assigned to points

#### Datum

- A parameter or set of parameters that define the position of the origin, the scale, and the orientation of a coordinate system
- Geodetic datum

• A datum describing the relationship of a two- or three- dimensional coordinate system to Earth (Lott 2015)









Near the mass center of Earth







What does this look like in the real world?

What does this look like in the real world?



What does this look like in the real world?



134.577°E, 24.006°S

Modified from: esri.com

What does this look like in the real world?



134.577°E, 24.006°S

Australian Geodetic Datum 1984



WGS 1984

- Coordinate system
  - A set of mathematical rules for specifying how coordinates are to be assigned to points

#### Datum

• A parameter or set of parameters that define the position of the origin, the scale, and the orientation of a coordinate system

#### Geodetic datum

 A datum describing the relationship of a two- or three- dimensional coordinate system to Earth

- Coordinate system
  - A set of mathematical rules for specifying how coordinates are to be assigned to points
- Datum
  - A parameter or set of parameters that define the position of the origin, the scale, and the orientation of a coordinate system
- Geodetic datum
  - A datum describing the relationship of a two- or three- dimensional coordinate system to Earth

**Coordinate reference system** 

# How are we feeling?



• A framework to measure locations on Earth as coordinates

- Framework to measure locations on Earth as coordinates
- A specific CRS comprises the following:
  - Earth ellipsoid
  - Geodetic datum
    - Origin point
    - Unit of measure
  - $\circ$  Map projection (in most but not all cases)

## 4 challenges to spatial analysis

- 1. We perceive geography in two dimensions, but live in three
- 2. Earth is irregular
- 3. Measurements are imperfect
- 4. Earth's surface is constantly changing

## Projection

• Mathematical transformation employed to translate a curved surface of a globe on a two-dimensional plane

#### All maps are wrong



https://www.youtube.com/watch?v=kIID5FDi2JQ&t=3s

## Projections



map





#### Projections

## Projections





#### Geographic

Defines where the data is located on Earth

3D

Describes locations as angles



Modified from: esri.com

| Geographic                                    | Projected                                                         |
|-----------------------------------------------|-------------------------------------------------------------------|
| Defines where the data is located on<br>Earth | Provides instructions on how to draw the data onto a flat surface |
| 3D                                            | 2D                                                                |
| Describes locations as angles                 | Describes locations in linear units                               |





Modified from: esri.com

• A PCS is a GCS that has been flattened using a map projection



- A PCS is a GCS that has been flattened using a map projection
- You can store data in a GCS, but you can't draw it on a flat map without a PCS

- A PCS is a GCS that has been flattened using a map projection
- You can store data in a GCS, but you can't draw it on a flat map without a PCS
- Picking a GCS depends on where you are mapping

- A PCS is a GCS that has been flattened using a map projection
- You can store data in a GCS, but you can't draw it on a flat map without a PCS
- Picking a GCS depends on where you are mapping
- Picking a PCS depends on where you are mapping AND the nature of the map you want to make
#### Projections

- Distortion is inevitable, so it's all about compromise
- Properties
  - o Area
  - Form
  - Distance
  - Direction



Changing between projections using the same datum and version:

**Projected coordinate system** 

UTM WGS84(G1762), zone 15

**Projected coordinate system** 

Iowa State Plane North, WGS84(G1762)

Modified from: GIS Fundamentals, Paul Bolstad



Changing between projections using the same datum and version:





Changing between projections using the same datum and version:





Changing between projections using different datums:

**Projected coordinate system** 

UTM WGS84(G1762), zone 15

**Projected coordinate system** 

Iowa State Plane North, NAD83(2011)

Modified from: GIS Fundamentals, Paul Bolstad



Changing between projections using different datums:



#### **Projected coordinate system**

Iowa State Plane North, NAD83(2011)

Modified from: GIS Fundamentals, Paul Bolstad

#### Projections

Changing between projections using different datums:



#### Projections

Changing between projections using different datums:



• Coordinate reference systems

- Coordinate reference systems
  - Coordinate systems

#### • Coordinate reference systems

- Coordinate systems
- Datums and geodetic datums

#### • Coordinate reference systems

- Coordinate systems
- Datums and geodetic datums
- Projections

#### • Coordinate reference systems

- Coordinate systems
- Datums and geodetic datums

#### • Projections

• Geographic vs. projected coordinate systems

#### • Coordinate reference systems

- Coordinate systems
- Datums and geodetic datums

#### • Projections

- Geographic vs. projected coordinate systems
- Basic trade-offs in projections



- Coordinate reference systems 
  Language for describing locations
  - Coordinate systems
  - $\circ$  Datums and geodetic datums
- Projections

Working model of Earth

Translation from 3D to 2D

- Geographic vs. projected coordinate systems
- Basic trade-offs in projections
- North isn't up and all maps are wrong!

# How are we feeling?

## BREAK



## Plan for today?



Jane Oliver Curriculum Development Consultant



#### **Pedagogical aspiration** "On my first day of school I felt excited to be here"

## Assignment 1

## US EPA definition of environmental justice:

**Environmental justice (EJ)** is the fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income with respect to the development, implementation and enforcement of environmental laws, regulations and policies.

Fair treatment means no group of people should bear a disproportionate share of the negative environmental consequences resulting from industrial, governmental and commercial operations or policies.



# EJScreen: Environmental Justice Screening and Mapping Tool



In order to better meet the Agency's responsibilities related to the protection of public health and the environment, EPA has developed a new environmental justice (EJ) mapping and screening tool called EJScreen. It is based on nationally consistent data and an approach that combines environmental and demographic indicators in maps and reports. Learn more about Environmental Justice at EPA.