EDS 223: Geospatial Analysis & Remote Sensing
Week 10




Welcome!

e LAST DAY OF CLASS!

e Assignments
o Assignment 4 due December 9
m  Sorry for the typos! Revised copy distributed on Slack
o Portfolio due December 15
m  Come to office hours for help/guidance this week!

e Today
o Active remote sensing
m Lidar+ Lab
m Radar

m [rivial
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What is remote sensing?

“the art, science, and technology of obtaining reliable
information about physical objects and the environment,
through the process of recording, measuring, and

interpreting imagery and digital representations of

patterns derived from non-contact sensor systems.”
(Colwell, 1997)
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Active remote sensing

What type of energy are we working with?

RADAR LiDAR
Radio Detection Light Detection
and Ranging and Ranging
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LiDAR: Light Detection and Ranging

height
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Using light to measure height
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Using light to measure height
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Using light to measure height

altitude = height + distance from sensor \ é ,

height = altitude - distance from sensor Speed of light
(always known!)

height is inversely related to duration
distance from= velocity x duration
altitude sensor 2

height

— == () meter above sea level




Using light to measure height

What components to do we need? %

distance from
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Y/
height

== () meter above sea level




Lasers

Source: Google Image search for “laser cats”



Lasers
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Lasers

near
infrared  green
LiDAR 1064 nm 532 nm

Light Detection l l
and Ranging

wavelength

radio infrared visible light ultraviolet X-rays CEIINERENVES
microwaves =

e Highly reflected off of vegetation

e Monochromatic
o spectrally narrow - know what to expect from its interactions
o spatially narrow - stays concentrated over long distances



LiDAR energy returns
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LiDAR energy returns
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LiDAR energy returns
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LiDAR energy returns
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LiDAR energy returns
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LiDAR energy returns
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https://www.youtube.com/watch?v=miOw30OhpswM&t=3s&ab_channel=LiDARit


http://www.youtube.com/watch?v=mi0w3OhpswM&t=3

Point clouds to surface models
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Point clouds to surface models

Digi‘ral Surface Digi‘ral Terrain
Model (DSM) Mode! (DTM)

Source: NEON



Point clouds to surface models
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Point clouds to surface models

DigHal Surface

Mode! (DSM)

DigHaI Terrain
Mode! (DTM)

Source: NEON

DSM (Digi’ral Surface Model)
"’DTM (Di9i+a| Terrain Model)

CHM (Canopy Height Model)
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Point clouds to surface models
FIRST RETURNS DSM

POINT CLOUD

l Query Interpolation

GROUND CLASS

Source: https://site.uvm.edu/sal/



int clouds to raster

Source: Earth Lab
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Aquatic LiDAR
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LiDAR systems
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LiDAR systems

N
N
terrestrial air-borne space-borne
e Bestresolution e Most common e Worst resolution
e Worst coverage e Still rarel e Best coverage
NEON ICESat

National Ecological Observatory Network Ice, Cloud, and land Elevation Satellite




LiDAR systems

terrestrial air-borne space-borne
e Bestresolution e Most common e Worst resolution
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National Ecological Observatory Network Global Ecosystem Dynamics Investigation
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LiDAR systems

terrestrial air-borne space-borne
e Bestresolution e Most common e Worst resolution
e Worst coverage e Still rarel e Best coverage
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Using LiDAR data to measure tree height:

San Joaquin Experimental Range

neen




Using LiDAR data to measure tree height:

San Joaquin Experimental Range
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Source: NEON



Using LiDAR data to measure tree height:

San Joaquin Experimental Range
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Switching gears...




Active remote sensing

What type of energy are we working with?
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Active remote sensing
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A note on context...
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RADAR systems
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RADAR viewing geometry
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RADAR viewing geometry

;oéioﬂ “at nadir”

A

pulse backscatter




RADAR viewing geometry
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RADAR viewing geometry
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Microwave interactions with matter
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Microwave interactions with matter
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Microwave interactions with matter

e BPe -

N R . fault scarps —t
C-Band VV (wavelength = 6 cm) Interpretation rough lava
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Source: Microlmages



RADAR wavelengths
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RADAR wavelengths

Band | Frequency

Ka

K

Ku

longer wavelengths
(]

Source: NASA

27-40 GHz

18-27 GHz

12-18 GHz

8-12 GHz

4-8 GHz

2-4 GHz

1-2 GHz

0.3-1 GHz

Wavelength
1.1-0.8 cm
1.7-1.1cm
2.4-1.7 cm

3.8-24cm

7.5-3.8cm

15-7.5 cm

30-15cm

100-30 cm

Typical Application

Rarely used for SAR (airport surveillance)
rarely used (H,O absorption)

rarely used for SAR (satellite altimetry)

High resolution SAR (urban monitoring,; ice and snow, little penetration into
vegetation cover; fast coherence decay in vegetated areas)

SAR Workhorse (global mapping; change detection; monitoring of areas with
low to moderate penetration; higher coherence); ice, ocean maritime
navigation

Little but increasing use for SAR-based Earth observation; agriculture
monitoring (NISAR will carry an S-band channel; expends C-band
applications to higher vegetation density)

Medium resolution SAR (geophysical monitoring; biomass and vegetation
mapping; high penetration, InSAR)

Biomass. First p-band spaceborne SAR will be launched ~2020; vegetation
mapping and assessment. Experimental SAR.

feature size



Microwave interactions with matter - wavelength




Microwave interactions with matter - wavelength
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Microwave interactions with matter - polarization
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Microwave interactions with matter - polarization

RELATIVE SCATTERING STRENGTH BY POLARIZATION:

Rough Surface Scattering 1S, 1715, 1215, 1 0r [S,. |

\/

Double Bounce Scattering |5 |>S,, |>1S,, | or [S,. |
Rough Surface

wlz,

Volume Scattering Mainsource of |S,, | and |S,. |

Source: NASA



Microwave interactions with matter
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Microwave interactions with matter
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RADAR viewing geometry
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RADAR viewing geometry
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Terrain distortions

uncorrected
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corrected
ground-range geometry

Source: Microlmages



Terrain distortions

Radar shadow
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“radar shadow”

Source: Microlmages



Terrain distortions
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Terrain distortions

a. C-band ERS-1 b. L-band JERS-1 look direction
depression angle =67Y depression angle =54Y
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Terrain distortions
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Terrain distortions

Source: Microlmages
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Advantages of RADAR

e Works in all weather
e Works at night

e Provides information outside of the visible and infrared
o E.g. surface roughness, dielectric properties, moisture content

e Can look beneath materials
o E.g.vegetation, sand, surface layers of snow



