## EDS 223: Geospatial Analysis & Remote Sensing Week 10



#### Welcome!

- LAST DAY OF CLASS!
- Assignments
  - Assignment 4 due December 9
    - Sorry for the typos! Revised copy distributed on Slack
  - Portfolio due December 15
    - Come to office hours for help/guidance this week!

#### • Today

- Active remote sensing
  - Lidar + Lab
  - Radar
  - Trivia!

#### Passive remote sensing



#### Active remote sensing



#### Passive remote sensing



USGS via Unsplash

#### Active remote sensing



#### What is remote sensing?

"the **art, science, and technology** of obtaining reliable information about physical objects and the environment, through the process of recording, measuring, and interpreting imagery and digital representations of **energy** patterns derived from **non-contact sensor systems**." (Colwell, 1997)

#### Electromagnetic spectrum



© Encyclopædia Britannica, Inc.

#### Active remote sensing

What type of energy are we working with?



#### Active remote sensing

What type of energy are we working with?



# LiDAR: Light Detection and Ranging height



USGS via Unsplash

































What components to do we need?



#### Lasers



Source: Google Image search for "laser cats"





- Highly reflected off of vegetation
- Monochromatic
  - spectrally narrow know what to expect from its interactions
  - spatially narrow stays concentrated over long distances














https://www.youtube.com/watch?v=mi0w3OhpswM&t=3s&ab\_channel=LiDARit









Source: NEON



Canopy Height Model (CHM)

DSM (Digital Surface Model) -DTM (Digital Terrain Model)

CHM (Canopy Height Model)

neqn

Source: NEON



Source: https://site.uvm.edu/sal/

## Point clouds to raster



Source: Earth Lab



# **Aquatic LiDAR**











terrestrial

air-borne

space-borne





air-borne



## space-borne

- Worst resolution
- Best coverage

- Best resolution
- Worst coverage



- Best resolution
- Worst coverage



## air-borne

- Most common
- Still rare!



## space-borne

- Worst resolution
- Best coverage



- Best resolution
- Worst coverage



air-borne

- Most common
- Still rare!

#### NEON

National Ecological Observatory Network





## space-borne

- Worst resolution
- Best coverage

### ICESat

Ice, Cloud, and land Elevation Satellite





- Best resolution
- Worst coverage



air-borne

- Most common
- Still rare!

#### NEON

National Ecological Observatory Network





## space-borne

- Worst resolution
- Best coverage

#### GEDI

Global Ecosystem Dynamics Investigation





- Best resolution
- Worst coverage



air-borne

- Most common
- Still rare!

#### NEON

National Ecological Observatory Network





## space-borne

- Worst resolution
- Best coverage

### GEDI

Global Ecosystem Dynamics Investigation





## Using LiDAR data to measure tree height: San Joaquin Experimental Range





## Using LiDAR data to measure tree height: San Joaquin Experimental Range





## Using LiDAR data to measure tree height: San Joaquin Experimental Range





study sites

## Switching gears...



# Active remote sensing

What type of energy are we working with?



Source: GIS Geography

# Active remote sensing

What type of energy are we working with?



Source: GIS Geography

## A note on context...



## RADAR systems











## Microwave interactions with matter



## Microwave interactions with matter



## Microwave interactions with matter



Source: Microlmages

## **RADAR** wavelengths



Frequency (GHz)

#### Source: NASA

# longer wavelengths

# **RADAR** wavelengths

| Band | Frequency | Wavelength | Typical Application                                                                                                                                                                    |
|------|-----------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ka   | 27–40 GHz | 1.1–0.8 cm | Rarely used for SAR (airport surveillance)                                                                                                                                             |
| К    | 18–27 GHz | 1.7–1.1 cm | rarely used (H <sub>2</sub> O absorption)                                                                                                                                              |
| Ku   | 12–18 GHz | 2.4–1.7 cm | rarely used for SAR (satellite altimetry)                                                                                                                                              |
| Х    | 8–12 GHz  | 3.8-2.4 cm | High resolution SAR (urban monitoring,; ice and snow, little penetration into vegetation cover; fast coherence decay in vegetated areas)                                               |
| С    | 4–8 GHz   | 7.5–3.8 cm | SAR Workhorse (global mapping; change detection; monitoring of areas with<br>low to moderate penetration; higher coherence); ice, ocean maritime<br>navigation                         |
| S    | 2–4 GHz   | 15–7.5 cm  | Little but increasing use for SAR-based Earth observation; agriculture<br>monitoring (NISAR will carry an S-band channel; expends C-band<br>applications to higher vegetation density) |
| L    | 1–2 GHz   | 30–15 cm   | Medium resolution SAR (geophysical monitoring; biomass and vegetation mapping; high penetration, InSAR)                                                                                |
| Ρ    | 0.3–1 GHz | 100–30 cm  | Biomass. First p-band spaceborne SAR will be launched ~2020; vegetation mapping and assessment. Experimental SAR.                                                                      |

## Microwave interactions with matter - wavelength





## Microwave interactions with matter - wavelength



Source: Microlmages
### Microwave interactions with matter - polarization



Source: Dabboor and Brisco 2018

## Microwave interactions with matter - polarization



### **RELATIVE SCATTERING STRENGTH BY POLARIZATION:**

| Rough Surface Scattering | $ S_{_{\!\!\!W}} \!\!>\!\! S_{_{\!\!\!H\!H}} \!\!>\!\! S_{_{\!\!\!H\!Y}} $ or $ S_{_{\!\!\!H\!H}} $ |
|--------------------------|-----------------------------------------------------------------------------------------------------|
| Double Bounce Scattering | $ S_{_{HH}} \!>\! S_{_{VV}} \!>\! S_{_{HV}} $ or $ S_{_{VH}} $                                      |
| Volume Scattering        | Main source of $ S_{_{\!\!HV}} $ and $ S_{_{\!\!VH}} $                                              |

### Microwave interactions with matter



### Microwave interactions with matter





### RADAR viewing geometry



True Ground-range (distance) Display Plane



uncorrected slant-range geometry

corrected ground-range geometry

### "off nadir" Radar shadow Strong on backslope return from steeper than pulse backscatter foreslope Weak return depression from angle backslope

**Terrain distortions** 

"radar shadow"











Source: Jensen 2007



# Advantages of RADAR

- Works in all weather
- Works at night
- Provides information outside of the visible and infrared
  - E.g. surface roughness, dielectric properties, moisture content
- Can look beneath materials
  - $\circ$   $\,$  E.g. vegetation, sand, surface layers of snow  $\,$