EDS 223: Geospatial Analysis \& Remote Sensing Week 3

Welcome!

- Week 2 recap
- Building a spatial analysis workflow
- Subsetting
- Aggregating
- Summarizing
- Simplifying

How to get unstuck

Spatial data models

\bullet - discrete

continuous \square
geometries

Simple features: sf

Toolbelt for solving spatial problems

Toolbelt for solving spatial problems

There is a group of 10 people who are ordering pizza. If each person gets 2 slices and each pizza has 4 slices, how many pizzas should they order?

Toolbelt for solving spatial problems

There is a group of 10 people who are ordering pizza. If each person gets 2 slices and each pizza has 4 slices, how many pizzas should they order?

Addition
Subtraction

Multiplication

Toolbelt for solving spatial problems

What is the life expectancy of the country in Asia with the highest population density?

9

Toolbelt for solving spatial problems

What is the life expectancy of the country in Asia with the highest population density?
subsetting
summarizing

mutating

New tools for a new data type

New tools for a new data type

New tools for a new data type

Toolbelt for solving spatial problems

Toolbelt for solving spatial problems

subsetting

New tools for a new data type

keep rows this only
from... data... IF... type is "otter" AND site is "bay"
filter (df, type == "otter" \& site == "bay")

New tools for a new data type

How many mountains over 14 K feet are in the United States?

New tools for a new data type

How many mountains over 14 K feet are in the United States?

New tools for a new data type

How many mountains over 14 K feet are in the United States?

New tools for a new data type

How many mountains over 14 K feet are in the United States?

New tools for a new data type

How many mountains over 14 K feet are in the United States?

New tools for a new data type

How many mountains over 14 K feet are in the United States?

Geometry!

Topological relationships

Topological relationships

Topological relationships

Topological relationships

within

Topological relationships

Topological relationships

Topological relationships

Topological relationships

overlaps

touches

crosses

within

Topological relationships

intersects

Topological relationships

disjoint

Yes or No

Topological relationships

intersects

Topological relationships

Topological relationships: clipping

Topological relationships: clipping

difference (x, y)

Topological relationships: clipping

difference (y, x)

Topological relationships: clipping

union

Topological relationships

What proportion of a species' range is unprotected?

Topological relationships

Topological relationships

intersects

Topological relationships

Buffers

Buffers

Buffers

How many people live within walking distance of a grocery store?

Buffers

How many people live within walking distance of a grocery store?

Buffers

How many people live within walking distance of a grocery store?

Buffers

How many people live within walking distance of a grocery store?

Buffers

How many people live within walking distance of a grocery store?

Toolbelt for solving spatial problems

subsetting

Toolbelt for solving spatial problems

subsetting aggregating
 還 ${ }^{-14}$

Switching gears...

Aggregation

Which continent has the highest population?

Aggregation

Which continent has the highest population?

continents <- world \%>\% group_by(continent) \%>\% summarise(population $=$ sum(pop, na.rm $=$ TRUE))

Country	Continent
USA	North America
\ldots	\ldots

Aggregation

Which continent has the highest population?

Country	Continent
USA	North America
\ldots	\ldots

Geometry unions

Geometry unions

Geometry unions

Geometry unions

Geometry unions

Geometry unions: area-weighted interpolation

Geometry unions: area-weighted interpolation

Geometry unions: area-weighted interpolation

Toolbelt for solving spatial problems

subsetting aggregating
 還 ${ }^{-14}$

Switching gears...

Toolbelt for solving spatial problems

summarizing

Summarizing

Summarizing

Centroids

Centroids

Centroids

Centroids

Centroids
?
党

Centroids

2

Convex hulls

Convex hulls

Toolbelt for solving spatial problems

summarizing

Toolbelt for solving spatial problems

Simplifications

Coastline paradox

Coastline paradox

Coastline paradox

Simplification

Simplification

Simplification: Douglas-Peucker algorithm

Simplification: Douglas-Peucker algorithm

$$
C=\left(P_{1}, P_{3}, P_{3}, \ldots, P_{n}\right)
$$

$\varepsilon>0$

Simplification: Douglas-Peucker algorithm

$$
{\overline{P_{I} P}}_{n}
$$

Simplification: Douglas-Peucker algorithm

$$
{\overline{P_{1} P}}_{n}
$$

$d\left(P_{i}, \bar{P}_{I} P_{n}\right)$

Simplification: Douglas-Peucker algorithm

$$
{\overline{P_{1} P}}_{n}
$$

$$
d_{\max }=\max _{i=2 \ldots n-1} d\left(P_{i}, \bar{P}_{I} P_{n}\right)
$$

Simplification: Douglas-Peucker algorithm

$$
{\overline{P_{1} P}}_{n}
$$

$$
d_{\max }=\max _{i=2 \ldots n-1} d\left(P_{i} \bar{P}_{I} \bar{P}_{n}\right) \leq \varepsilon
$$

Simplification: Douglas-Peucker algorithm

$$
{\overline{P_{I} P}}_{m} \quad \bar{P}_{m}{ }_{n}
$$

$$
d_{\max }=\max _{i=2 \ldots n-1} d\left(P_{i} \bar{P}_{I} P_{n}\right) \leq \varepsilon
$$

Simplification: Douglas-Peucker algorithm

$$
{\overline{P_{I} P}}_{m} \quad \bar{P}_{m}{ }_{n}
$$

$$
d_{\max }=\max _{i=2 \ldots n-1} d\left(P_{i} \bar{P}_{1} P_{n}\right) \leq \varepsilon
$$

Simplification: Douglas-Peucker algorithm

$$
{\overline{P_{l} P}}_{m} \quad \bar{P}_{m}{ }_{n}
$$

$$
d_{\max }=\max _{i=2 \ldots n-1} d\left(P_{i} \bar{P}_{I} P_{n}\right) \leq \varepsilon
$$

Simplification: Douglas-Peucker algorithm

Simplification: Douglas-Peucker algorithm

Simplification: Douglas-Peucker algorithm

Simplification: Douglas-Peucker algorithm

Hands-On

Drag the Slider to change the value of ε and simplify the drawn curve. Click in the grid to draw new points. You can clear the curve by clicking on the Clear Button or you can restore a default path by choosing one from the Reset Button. The original line is displayed in dashed gray and the simplified line is displayed in solid blue.

Douglas-Peucker algorithm

Simplification: Visvalingam's algorithm

Simplification: Visvalingam's algorithm

Simplification: Visvalingam's algorithm

Simplification: Visvalingam's algorithm

Simplification: Visvalingam's algorithm

Simplification: Visvalingam's algorithm

Simplification: Visvalingam's algorithm

June 1, 2012 / Mike Bostock

Line Simplification

$1.0 p x^{2} / 16.04 \%$

Simplification

Simplification

Simplification

Smoothing

Smoothing: Chaikin's corner cutting algorithm

Smoothing: Chaikin's corner cutting algorithm

Smoothing: Chaikin's corner cutting algorithm

Smoothing: Gaussian kernel

Smoothing: Gaussian kernel

Gaussian distribution:

Smoothing: Gaussian kernel

Smoothing: Gaussian kernel

Smoothing: Gaussian kernel

Smoothing: Gaussian kernel

Toolbelt for solving spatial problems

