EDS 223: Geospatial Analysis & Remote Sensing Week 4

USGS via Unsplash

Welcome!

• Course logistics

- Course expectations
- Upcoming and past events
- Plans for next week

• Building a spatial analysis workflow

How to get unstuck

Start here

Resource	Steps
Yourself	 Review the lecture/lab/discussion materials Review the background reading Google!
Your peers	 Talk to a friend Ask the #eds-223-geospatial Slack channel
TA	 Ask questions in discussion section Attend office hours Send a message over Slack
Instructor	 Attend office hours Send a message over Slack

Course preparation

How to solve an environmental data science problem

- Break the problem into parts
 - What data do you need?
 - What tools do you need?
- Make a plan
 - What are your inputs?
 - What outputs do you want to create?
 - How can you apply your tools to turn your inputs into outputs?
 - Create a diagram
- Develop your plan
 - Turn our diagram into code
- Test your plan
 - What are the outputs at each step?
 - Do they look right?

Catch up on blogging

home about talks & workshops projects posts

Adding a blog to your existing Quarto website

Got a Quarto website, but no blog? We can fix that!

UARTO R MEDS

AUTHOR Samantha Csik 🙆

AFFILIATION Master of Environmental Data Science Program @ The Bren School (UCSB) & The National Center for Ecological Analysis and Synthesis

PUBLISHED October 24, 2022 MODIFIED October 22, 2023

About a year ago, I wrote my first ever blog post ~ about blogging ~ and tbh I'm a *little* embarrassed that this is only my third post here (does it count that I have *ideas* for blog posts squirreled away at least?? G). Regardless, you should trust me¹ when I say that blogging is a great exercise for you to practice as regularly as you can – it can help you to:

- build your online profile/portfolio
 - "...sharing anything is almost always better than sharing nothing" @drob in his post, Advice to aspiring data scientists: start a blog
- practice your writing & communication skills
- stay atop data science trends
- solicit feedback from the community
- network
- learn something new and/or solidify your understanding

On this page

I. Before we chat about blogs... II. What's the difference

III. Adding a blog to your personal Quarto website and a blog? III. Adding a blog to your personal Quarto website VV. Add a blog post to your blog V. Some additional authoring features to explore VI. A note on adding an additional blog (or more) to your site VII. Blogs to follow (+ one post from each that I/ve particularly enjoyed)

VIII. Additional Resources

About	Master's Programs	PhD Program	Career Services	Bren Life	Research	

EVENTS | COMMUNITY EVENT

Mantell Symposium in Environmental Justice and Conservation Innovation 2023

Advancing Environmental Justice and Conservation Innovation: Global Challenges, Local Solutions

Oct 26 2023 | 1:00pm PST Bren Hall 1414 / Online

Expert panel on spatial data science

Jessica Couture Conservation International

Emily Gaston Rincon Consulting

Julie Padilla USGS

Alessandra Vidal Meza Audubon Society

Expert speaker on conservation decision making

Millie Chapman NCEAS

Questions Responses Settings

Due tonight by midnight!

EDS 223: week 4	
THIS IS NOT A TEST!! The following are questions meant to gauge how well the class overall is digesting	1
material. You will not be graded for correctness. This is just to figure out where everyone is at!	
last name *	E
Short answer text	_
first name * Short answer text	
What is a coordinate reference system and what are its key components? * Short answer text	
What is a coordinate reference system and what are its key components? * Short answer text What is a projection? *	
What is a coordinate reference system and what are its key components? * Short answer text What is a projection? * Short answer text	

Describe the differences between geographic and projected coordinate reference systems. *

Short answer text

Describe the difference between vector and raster data models. *

Long answer text

• discrete

raster

• discrete

vector

raster

Vector data models

Vector data models

ID	Species	Age
1	Poplar	11
2	Oak	2
3	Beech	12
4	Cedar	15

raster

X

Modified from: GIS Fundamentals, Paul Bolstad

geometry ?

raster

Modified from: GIS Fundamentals, Paul Bolstad

geometry

- Cell size
- Number of rows/columns
- Cell origin
- CRS

raster

geometry

- Cell size
- Number of rows/columns
- Cell origin
- CRS

attribute

- One value per cell
- Categorical, numerical, logical

raster

Vector data models

geometry

- Cell size
- Number of rows/columns
- Cell origin
- CRS

attribute

- One value per cell
- Categorical, numerical, logical

geometry

- Cell size
- Number of rows/columns
- Cell origin
- CRS

attribute

- One value per cell
- Categorical, numerical, logical

geometry

- Cell size
- Number of rows/columns
- Cell origin
- CRS

attribute

- One value per cell
- Categorical, numerical, logical

- Number of rows/columns
- Cell origin
- CRS

- Cell size → resolution
- Number of rows/columns
- Cell origin
- CRS

- "finer"
- "higher"

- "coarser"
- "lower"

- Cell size → resolution
- Number of rows/columns
- Cell origin
- CRS

- "finer"
- "higher"
- 1 km

- "coarser"
- "lower"
- 5 km

- Cell size
- Number of rows/columns ------> extent
- Cell origin
- CRS

- Cell size
- Number of rows/columns
- Cell origin _____ position
- CRS

Spatial data models

Toolbelt for solving spatial problems

New tools for a new data type

data frame

attributes

1	type	food	site
	otter	urchin	bay
	shark	seal	channel

observations

New tools for a new data type

data frame

attributes

observations

type	food	site	
otter	urchin	bay	
shark	seal	channel	

matrix

columns

1	4	8
10	7	3
2	5	1

Toolbelt for solving spatial problems

New tools for a new data type

R's spatial ecosystem

Source: Geocomputation with R

Switching gears...

Toolbelt for solving spatial problems

Toolbelt for solving spatial problems

Topological relationships

intersects

Yes or No

Spatial subsetting

Spatial subsetting

Spatial subsetting: clipping

Spatial subsetting: clipping

Spatial subsetting: clipping

Spatial subsetting: masking

Spatial subsetting: masking

Switching gears...

Toolbelt for solving spatial problems

• Operations that modify or summarize raster cell values

- Operations that modify or summarize raster cell values
- Power of the Matrix

					0 0 1 1 0 00 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0
		1 001 0 101 101 10 1 0 1 0 10	0000000000000	10 41 41 1 01 040 1 00001	110 0 111 0 00 101 1 4 1 1 101 0
					01 01 101 1000 0101010
	9 4 9 1 1 2 4 5 1 9 8 9	0 1 1 1 001 0 011 0 011	0 0 0 0 100 1 0 1	1 1 6 0 1 1 10 900 0 900 1	9 1 1 101 1 80 9 90 1 80 90 R
	Di L Do L Do d ilo				
			000000000000000		0 1 0 0 0 1 1 0 1 1 0 1 0 0 0 0 0 1 0
		0 010 4 10 0 0 1 1 0 0 1	0100011010		0 0 0 0 1 1 1 1 1 0 1 1 0 1 0 0 1 0
		10 101 11 001 10001 0 1001 5 001 0 0 0 0 001 0 1 001	0 1 0 101 00 01		1 0 0 010 0 1 1 0 010 0 0 0 00 1 1 0 0 1 4 1 0 1 1 8 1 0 1 2 0 4 9 0 0 1 8
	1 0 1 1 0 0 1 1 1 0 1 0 0 0 1 1 0 0 1 0 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0	111001100		1 0 0 1 10 0 0 10 1 10 0 1 0 0 1 0
		$\begin{array}{c} 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1$			
		(0,0) = 0 $(0,1) = 0$ $(0,0) = 0$ $(0,1) = 0$ $(0,1) = 0$ $(0,0) = 0$ $(0,1) = 0$ $(0,0) = 0$ $(0,1) = 0$ $(0,0) = 0$	0 0 2 1 0 0 0 0		0 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0	0 1 1 1 0 0 D 0 0 0 0 0 0 1 1 1		1 1 1 1 0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0
				10 100 81 bil	
		0 00000 0 100000 0 1000000 0 1000000000		5^{0} 5^{0} 5^{0} 6^{0} 6^{0} 6^{0} 5^{0} 6^{0} 6^{0} 1	
			16 110 0.01	100 0001 00 1 0 100	
				1^{11}_{01} 1^{11}_{11} 1^{10}_{11} 1^{10}_{11} 1^{10}_{11} 1^{10}_{110}	
	1 01 1 000 0		0 0 0 0 1 1		
	b 010 0 001 01	1 9 1 9 0 1	90 9 0 10 1	010 10110 1 1 111	110 0 010 000 10 100
				1_{10} 1_{011} 1_{110}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0 011 1	4 1 0 0 0 0 1 1	0 1 01 0	1 1 0 0 1 0 1 0 1 0	001 11 11 q 10
			0 01 0		
	1 1 01		a 10	1^{0} 1^{1} 0^{0} 1^{0} 0^{0} 1^{0}	

- Operations that modify or summarize raster cell values
- Power of the Matrix, matrix

matrix

columns

Î	1	4	8
	10	7	3
row	2	5	1

geometry

- Cell size
- Number of rows/columns
- Cell origin
- CRS

- Operations that modify or summarize raster cell values
- Power of the Matrix, matrix
- "Raster is faster, vector is corrector"

matrix

columns

Î	1	4	8
	10	7	3
row	2	5	1

geometry

- Cell size
- Number of rows/columns
- Cell origin
- CRS

- Local
- Focal
- Zonal
- Global

Scale or number of cells

• Local

• Cell-by-cell operations in one or several layers

• Local

• Cell-by-cell operations in one or several layers

Source: Geocomputation with R, chapter 4

• Local

• Cell-by-cell operations in one or several layers

Normalized Difference	 NIR - Red	
Vegetation Index	 NIR + Red	

Switching gears...

- Local
- Focal
- Zonal
- Global

Scale or number of cells

- Focal
 - Applies an aggregation function to all cells within a specified neighborhood, uses the corresponding output as the new value for the central cell, and moves on to the next central cell

- Focal
 - Applies an aggregation function to all cells within a specified neighborhood, uses the corresponding output as the new value for the central cell, and moves on to the next central cell

Source: Geocomputation with R, chapter 4

- Focal
 - Applies an aggregation function to all cells within a specified neighborhood, uses the corresponding output as the new value for the central cell, and moves on to the next central cell

Source: Geocomputation with R, chapter 4

Smoothing: Gaussian kernel

- Focal
 - Applies an aggregation function to all cells within a specified neighborhood, uses the corresponding output as the new value for the central cell, and moves on to the next central cell

Source: Geocomputation with R, chapter 4

Switching gears...

- Local
- Focal
- Zonal
- Global

Scale or number of cells

- Zonal
 - Applies an aggregation function to multiple cells based on a grouping variable

- Zonal
 - Applies an aggregation function to multiple cells based on a grouping variable

- Zonal
 - Applies an aggregation function to multiple cells based on a grouping variable

"zones"

Switching gears...

- Local
- Focal
- Zonal
- Global

Scale or number of cells

Toolbelt for solving spatial problems

Toolbelt for solving spatial problems

Raster data model

Resolution

- Extent
- Position

Toolbelt for solving spatial problems

Changing extent and origin

Changing extent and origin

Switching gears...

Raster data model

Resolution

- Extent
- Position

Nearest neighbor

Bilinear interpolation

5

Switching gears...

Raster data model

Toolbelt for solving spatial problems

Resampling

Resampling

Nearest neighbor

Bilinear interpolation

Switching gears...

