EDS 223: Geospatial Analysis & Remote Sensing Week 7

USGS via Unsplash

Chris Costello | Arturo Keller Ruth Oliver | Naomi Tague Hunter Lenihan | Eric Masanet Joan Dudney | Andy MacDonald Ranjit Deshmukh | Kelly Caylor Ashley Larsen | Mark Buntaine

GRADE VOI

VOIR FAILS!

FRIDAY NOVEMBER 17 2 - 4PM

HOSTED BY ANDREW PLANTINGA IN BREN 1414 RECEPTION TO FOLLOW

Welcome!

• Course logistics

- This week
 - Office hours moved to Thursday @ 3:30
- Next week
 - Tuesday hybrid option and recording
 - Office hours and discussion section cancelled
 - Enjoy the holiday!

Welcome!

• Course logistics

- This week
 - Office hours moved to Thursday @ 3:30
- Next week
 - Tuesday hybrid option and recording
 - Office hours and discussion section cancelled
 - Enjoy the holiday!

Jane Oliver Guest instructor

Welcome!

- Recap of last week
- Image resolutions
- Digital images
- True/False color imagery
- Final project guidance
- Raster operations
- Check-in quiz

Source: GIS Geography

Source: GIS Geography

Image resolutions

- Spatial
- Temporal
- Spectral
- Radiometric

What makes an image?

↑ Lit area ↑ Distance from source

Lit area
Distance from source
Lit area
size of source

Raster over the same extent, at 4 different resolutions

- Measure of the smallest angular or linear separation between two object
 - The smallest feature that can be detected
 - Usually refers to the size of one pixel

Better resolution	Worse resolution
0.5 m	20 m

high, fine, better

low, coarse, worse

Image resolutions

- Spatial
 - Raster resolution
- Temporal
- Spectral
- Radiometric

• Time interval between acquisitions of a particular area

• Time interval between acquisitions of a particular area

Factors determining temporal resolution:
 satellite/sensor capabilities, orbit

• Time interval between acquisitions of a particular area

- Factors determining temporal resolution:
 - satellite/sensor capabilities, orbit
- Factors affecting ACTUAL resolution:
 - Clouds, sunlight

Spatial and temporal resolution of major satellites

Temporal resolution

Landsat (30 m, 16 days)

> MODIS (25 m, 1 day)

Image resolutions

- Spatial
 - \circ Raster resolution
- Temporal
 - Number of rasters for same location
- Spectral
- Radiometric

• Number of dimensions (or bands) of a specific wavelength to which a remote sensing instrument is sensitive and the range of those channels

ElectroMagnetic Spectrum

Source: Colin Williams, NEON

• Number of dimensions (or bands) of a specific wavelength to which a remote sensing instrument is sensitive and the range of those channels

• Number of dimensions (or bands) of a specific wavelength to which a remote sensing instrument is sensitive and the range of those channels

• Number of dimensions (or bands) of a specific wavelength to which a remote sensing instrument is sensitive and the range of those channels

Landsat 8 Bands

Band	Wavelength range (nm)	Spatial Resolution (m)	Spectral Width (nm)
Band 1 - Coastal aerosol	430 - 450	30	2.0
Band 2 - Blue	450 - 510	30	6.0
Band 3 - Green	530 - 590	30	6.0
Band 4 - Red	640 - 670	30	0.03
Band 5 - Near Infrared (NIR)	850 - 880	30	3.0
Band 6 - SWIR 1	1570 - 1650	30	8.0
Band 7 - SWIR 2	2110 - 2290	30	18
Band 8 - Panchromatic	500 - 680	15	18
Band 9 - Cirrus	1360 - 1380	30	2.0

Landsat 8

Landsat 7

Source: USGS

Multispectral Microwave Infrared Visible Ultraviolet X-ray Band 4 5 1 2 3

Hyperspectral

This work is licensed under a Creative Commons Attribution 3.0 Unported License. Author: http://commons.wikimedia.org/wiki/User:Arbeck

Source: Asner Lab

- Spatial
 - Raster resolution
- Temporal
 - Number of rasters for same location
- Spectral
 - Number of layers for each raster
- Radiometric

Radiometric resolution

- Number of different output numbers in each band of data
 - Determined by the number of bits into which the recorded radiation is divided
 - "Dynamic range"

(A) 8 bits (256 levels)

(B) 4 bits (16 levels)

(C) 2 bits (4 levels)

(D) 1 bit (2 levels)

Better resolution	Worse resolution
8 bit	2 bit

Source: Advanced Remote Sensing 2020

Radiometric resolution

- Number of different output numbers in each band of data
 - Determined by the number of bits into which the recorded radiation is divided
 - "Dynamic range"

(A) 8 bits (256 levels)

(B) 4 bits (16 levels)

(C)	2 bits	(4	leve	1
		•		

(D) 1 bit (2 levels)

Better resolution	Worse resolution
8 bit	2 bit

Source: Advanced Remote Sensing 2020

	Number of possible values	Possible values
1 bit	2	0-1
2 bit	4	0-3
8 bit	256	0-255
n bit	2 ⁿ	0 - (2 ⁿ -1)

Radiometric resolution

- Number of different output numbers in each band of data
 - Determined by the number of bits into which the recorded radiation is divided
 - "Dynamic range"

(A) 8 bits (256 levels)

(B) 4 bits (16 levels)

(C) 2 bits (4 levels)

(D) 1 bit (2 levels)

Better resolution	Worse resolution
8 bit	2 bit

Source: Advanced Remote Sensing 2020

- Spatial
 - Raster resolution
- Temporal
 - Number of rasters for same location
- Spectral
 - Number of layers for each raster
- Radiometric
 - Number of possible values for each raster cell

- Spatial
 - Measure of the smallest angular or linear separation between two object
 - Pixel size
- Temporal
 - Time interval between acquisitions of a particular area
 - Revisit time
- Spectral
 - Number of dimensions (or bands) of a specific wavelength to which a remote sensing instrument is sensitive and the range of those channels
 - Number and range of bands
- Radiometric
 - Number of different output numbers in each band of data
 - Number of shades of grey

Spatial resolution
 Less light collected
 Radiometric resolution

 Temporal resolution
 Less light collected
 Spatial resolution

↑ Spectral or spatial resolution
↑File size

Size of image = number of pixels * bits per pixel

Plot it!

Source: NASA, Leah Hustak

vegetation

wavelength	reflectance
blue	low
green	high
red	low
infrared	really high

Source: NASA, Leah Hustak

vegetation

wavelength	reflectance
blue	low
green	high
red	low
infrared	really high

REFLECTANCE SPECTRA: EARTH'S SURFACE MATERIALS Snow A Vegetation Reflectance Dry soil Water 2,000 Wavelength (nanometers)

water

wavelength	reflectance
blue	low
green	low
red	low
infrared	low

Source: NASA, Leah Hustak

What is remote sensing?

"the **art**, **science**, **and technology** of obtaining reliable information about physical objects and the environment, through the process of recording, measuring, and interpreting imagery and digital representations of **energy** patterns derived from **non-contact sensor systems**." (Colwell, 1997)

What you see..

Your computer sees..

1	11	155
4	20	174
6	55	202
23	72	33
37	90	41

Low values

High values

8 bit image: $2^8 = 256$ values per band

RGB display: 256 * 256 * 256 = more than 16 million color combinations

8 bit image: $2^8 = 256$ values per band

RGB display: 256 * 256 * 256 = more than 16 million color combinations

Color mixing: RGB

- Red, Green, Blue color model
- Additive color model
- Start with black and "add" colors to make white
- Primary colors
 - \circ Red
 - o Green
 - Blue
- Secondary colors
 - o Magenta
 - \circ Yellow
 - Cyan
- Purpose: digital display
- How light actually works!

Color mixing: CMYK

СМҮК

Subtractive colors

- Cyan, Magenta, Yellow, Key (black) color model
- Subtractive color model
- Start with white and "subtract" colors to make black
- Primary colors
 - Magenta
 - \circ Yellow
 - Cyan
- Secondary colors
 - Red
 - Green
 - Blue
- Purpose: paints

Wait.... What about RYB?

- Red, Yellow, Blue color model
- Subtractive color model
- Predates modern color theory

True and False color imagery

True and False color imagery

True and False color imagery

YELLOW BLUE ORANGE BLACK RED GREEN **PURPLE YELLOW RED ORANGE GREEN BLACK BLUE RED PURPLE GREEN BLUE ORANGE**

Break down

Add labels to wavelengths

- Blue light (450-490 nm)
 - Reflects:
 - Water
 - Manmade features
- Green light (490-580 nm)
 - Reflects:
 - Chlorophyll
 - Sediment in water
- Red light (620-780 nm)
 - Reflects:
 - Iron and iron oxides
 - Absorbs:
 - Healthy vegetation
- Near infrared (700-1100 nm)
 - Absorbs:
 - Water
- Shortwave infrared (1100-3000 nm)
 - Reflects:
 - Fire, newly burned area
 - Absorbs:
 - Water

Visualizing remote sensing data

vegetation

wavelength	reflectance
blue	low
green	high
red	low
infrared	really high

REFLECTANCE SPECTRA: EARTH'S SURFACE MATERIALS Snow A Vegetation Reflectance Dry soil Water 2,000 Wavelength (nanometers)

water

wavelength	reflectance
blue	low
green	low
red	low
infrared	low

Source: NASA, Leah Hustak

- Select an image
 - Determine which bands are being displayed in which channels
 - What wavelengths correspond to RGB display?
- Discuss what patterns this band combination reveals

EDS 223: Geospatial Analysis & Remote Sensing Week 7

USGS via Unsplash

Final project guidance

terra vs. stars

terra	stars
 Formal replacement of raster Handles "regular" grids Not explicitly set up to handle data with a temporal dimension Simpler data structure Good documentation 	 Not a replacement of raster Can handle irregular grids Can handle data with a temporal dimension More complicated data structure Sparse documentation

Share a lot of functionality!

Raster data model

Resolution

- Extent
- Position

Toolbelt for solving spatial problems

Changing extent and origin

Source: Geocomputation with R, chapter 4

Changing extent and origin

Source: Geocomputation with R, chapter 4

Switching gears...

Raster data model

Resolution

- Extent
- Position

Source: Geocomputation with R, chapter 5

Nearest neighbor

Bilinear interpolation

5

Source: Geocomputation with R, chapter 5

Switching gears...

Raster data model

Toolbelt for solving spatial problems

Resampling

Resampling

Nearest neighbor

Bilinear interpolation

Switching gears...

