EDS 223: Geospatial Analysis & Remote Sensing Week 8

USGS via Unsplash

Welcome!

• Reminders

- Assignment 4 is posted! Due December 9
- Portfolio is due December 15

• Assessment

• Due tomorrow by midnight

Why do leaves change colors?

Why do leaves change colors?

Welcome!

- Remote sensing of vegetation
 - Leaf
 - Canopy
 - Landscape
 - Vegetation indices
- Investigating plant phenology in Southern CA

Source: NASA, Leah Hustak

Why does the reflectance spectra for vegetation look like this?

Source: NASA, Leah Hustak

- More complex leaves: More internal scattering
- · Lower transmission
- · More diffuse scattering

Remotely sensing leaf moisture content

moisture content

shortwave infrared reflectance

5%

25%

50% 75%

Soil reflectance

soil and vegetation both strongly reflect near infrared

Soil reflectance

soil and vegetation both strongly reflect near infrared

healthy vegetation absorbs more red

Soil reflectance

Red reflectance (%)

Red reflectance (%)

Goals:

- Distinguish (un)healthy vegetar and soil
- Stay constant across images

Goals:

- Distinguish (un)healthy vegetar and soil
- Stay constant across images

Ratio Vegetation Index

 $RVI = Near infrared \div Red$

Vegetation phenology

Source: EcoTree

Vegetation phenology

Goals:

• Understand the phenological cycles of plant communities near the Santa Clara River

Approach:

- Estimate NDVI from monthly Landsat images
- Use study sites representing:
 - Riparian forest
 - Grasslands
 - Chaparral shrublands

- Break the problem into parts
 - What data do you need?
 - What tools do you need?
- Make a plan
 - What are your inputs?
 - What outputs do you want to create?
 - How can you apply your tools to turn your inputs into outputs?
 - Create a diagram
- Develop your plan
 - Turn our diagram into code
- Test your plan
 - What are the outputs at each step?
 - Do they look right?

- Break the problem into parts
 - What data do you need?
 - \circ What tools do you need?
- Data:
 - Monthly satellite data
 - Information on location of vegetation communities
- Tools:
 - \circ Raster and vector tools

• Make a plan

- What are your inputs?
- What outputs do you want to create?
- How can you apply your tools to turn your inputs into outputs?
- Create a diagram
- Inputs:
 - Monthly satellite reflectance data
 - Polygons of study sites for each veg community
- Outputs:
 - Time series of NDVI for each veg community

- Break the problem into parts
 - What data do you need?
 - What tools do you need?
- Make a plan
 - What are your inputs?
 - What outputs do you want to create?
 - How can you apply your tools to turn your inputs into outputs?
 - Create a diagram
- Develop your plan
 - Turn our diagram into code
- Test your plan
 - What are the outputs at each step?
 - Do they look right?