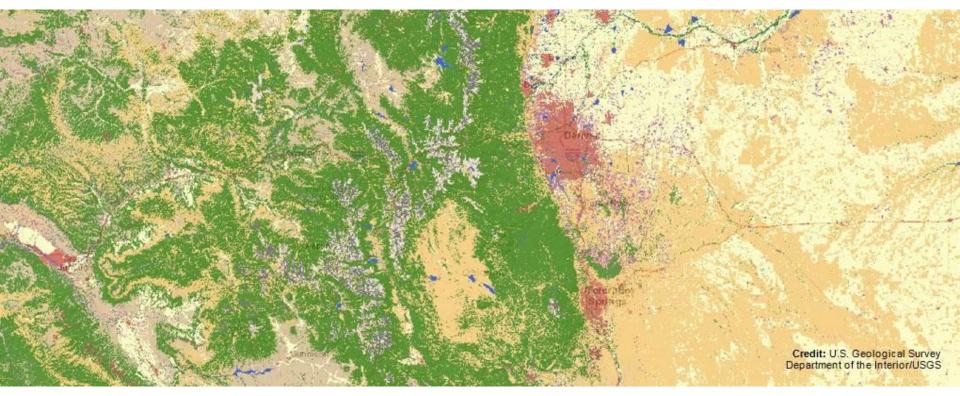
EDS 223: Geospatial Analysis & Remote Sensing Week 9



Welcome!

• Assignments

- Assignment 4 due December 9
 - Sorry for the typos! Will distribute revised copy
- Portfolio due December 15
 - Come to office hours for help/guidance

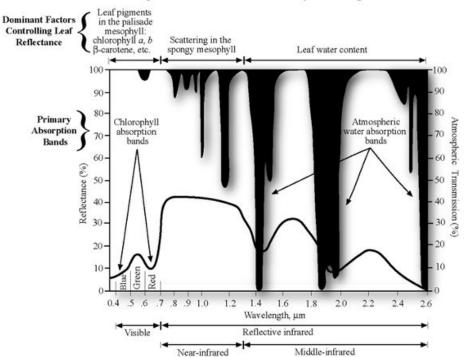
• Next week

- Active remote sensing
- Course wrap-up
- Course-evaluations

Vegetation indices

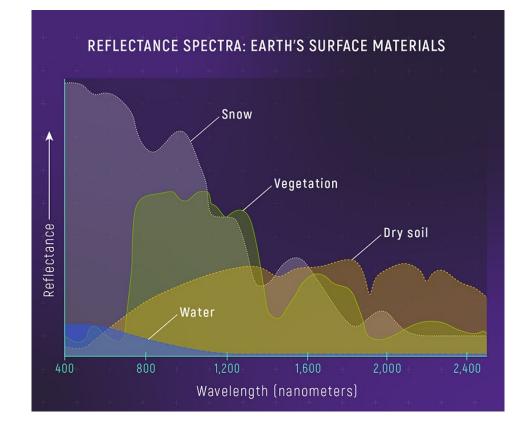
$NDVI = \frac{(NIR - red)}{(NIR + red)}$ $NMDI = \frac{(NIR - SWIR)}{(NIR + SWIR)}$

Factors controlling leaf reflectance



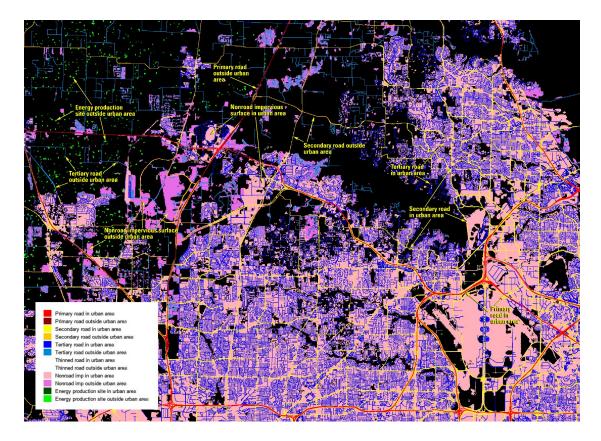
Spectral Characteristics of Healthy Green Vegetation

Image classification



Source: NASA, Leah Hustak

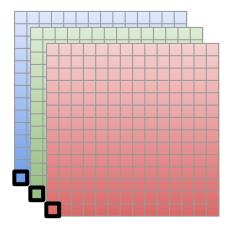
Source: USGS

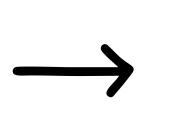


Source: USGS

Image classification

bands





classes/categories

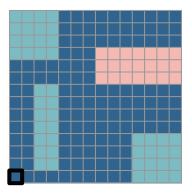
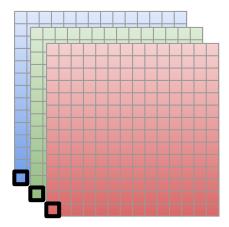
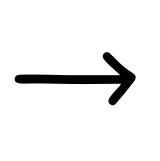


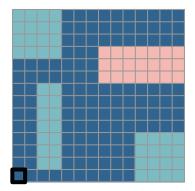
Image classification

bands

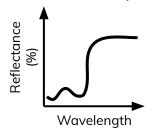




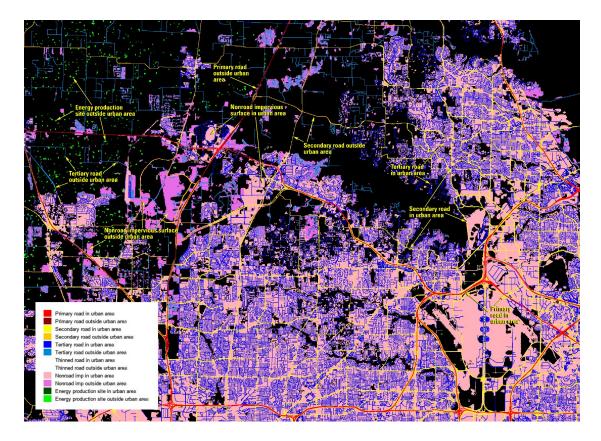
classes/categories



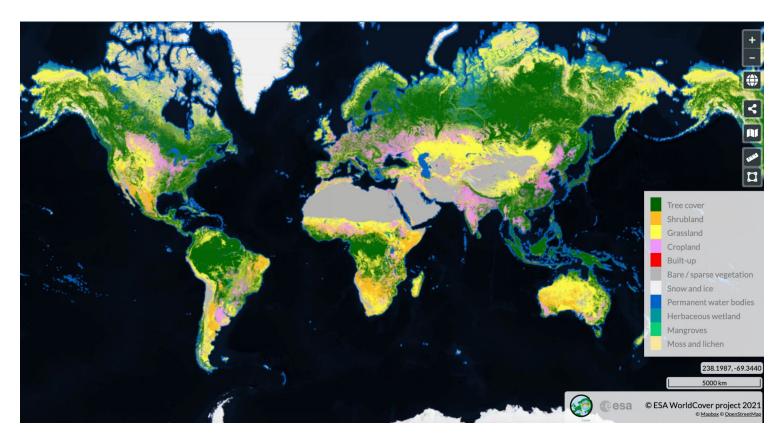
reflectance spectra



finite number of classes



Source: USGS



Classification scales

Level I: Global AVHRR MODIS resolution: 250 m to 1.1 km

Level II: Continental AVHRR MODIS Landsat Multispectral Scanner Landsat Thematic Mapper *resolution:* 80 m to 1.1 km

Level III: Biome

Landsat Multispectral Scanner Landsat Thematic Mapper Plus Synthetic Aperture Radar *resolution:* 30 m to 80 m

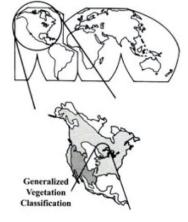
Level IV: Region

Landsat Thematic Mapper SPOT High Altitude Aerial Photography Synthetic Aperture Radar *resolution:* 3 to 30 m

Level V: Plot

Stereoscopic Aerial Photography IKONOS QuickBird *resolution:* 0.25 to 3 m

Level VI: In situ Measurement Surface Measurements and Observations



Source: Jensen 2007

Land cover	Land use

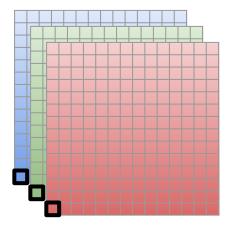
Land cover	Land use
Refers to the type of natural and artificial materials present on a landscape	Refers to the human use of landscapes

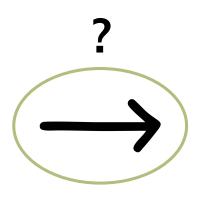
Land cover	Land use
Refers to the type of natural and artificial materials present on a landscape	Refers to the human use of landscapes
E.g. forest, sand, water, cement	E.g. protected area, industrial, residential

Land cover	Land use
Refers to the type of natural and artificial materials present on a landscape	Refers to the human use of landscapes
E.g. forest, sand, water, cement	E.g. protected area, industrial, residential
Able to observe	Abstract/intangible, requires deductive reasoning

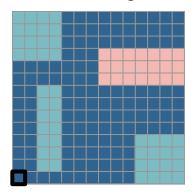
Land cover	Land use
Refers to the type of natural and artificial materials present on a landscape	Refers to the human use of landscapes
E.g. forest, sand, water, cement	E.g. protected area, industrial, residential
Able to observe	Abstract/intangible, requires deductive reasoning
	I

bands

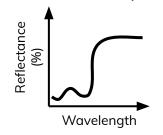


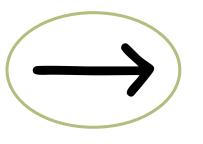


classes/categories



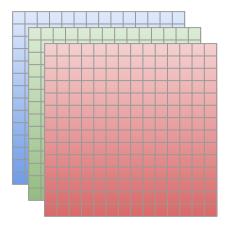
reflectance spectra



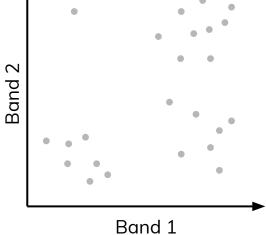


finite number of classes

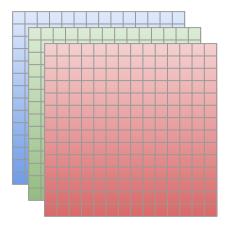
Geographic space

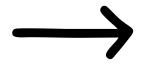


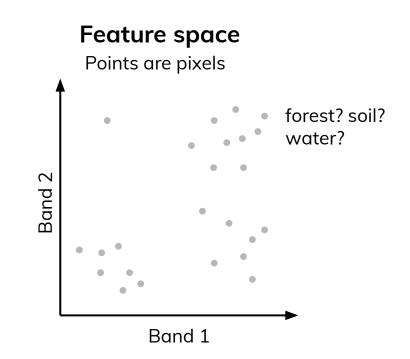
Feature space Points are pixels



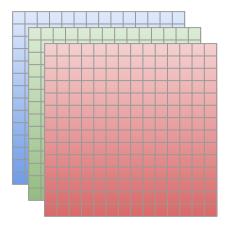
Geographic space





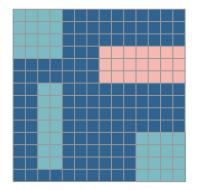


Geographic space

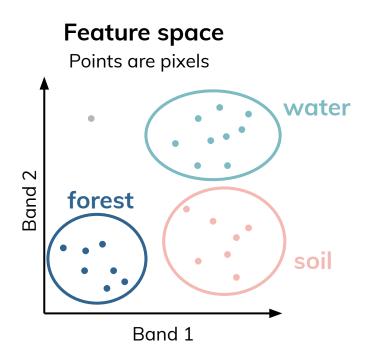


Feature space Points are pixels water Band 2 forest • soil Band 1

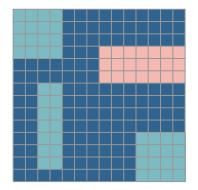
Geographic space



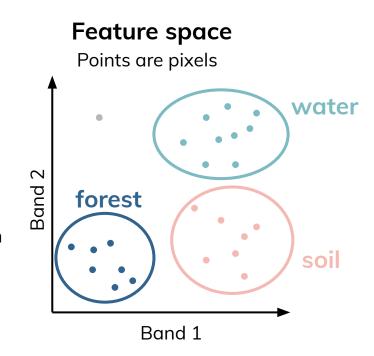
 \leftarrow

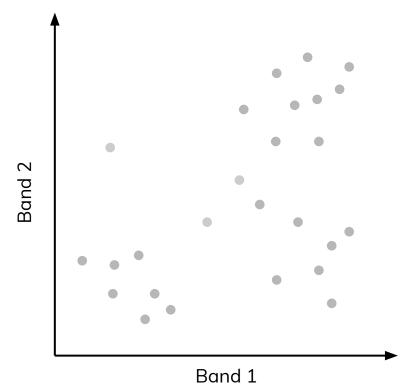


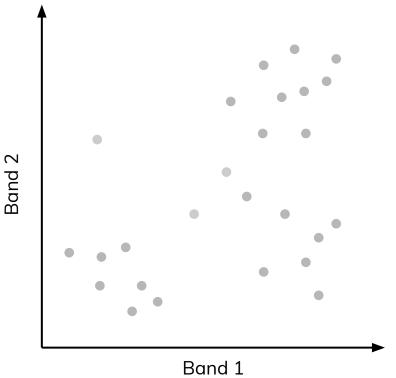
Geographic space



Lots of ways to assign pixels to groups!

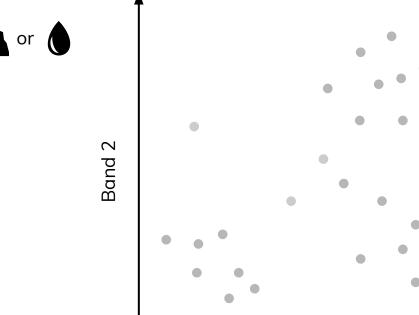






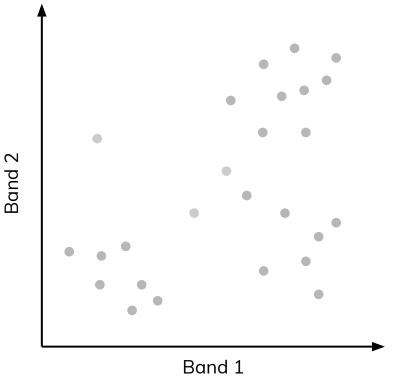
• Pick a number of groups

or



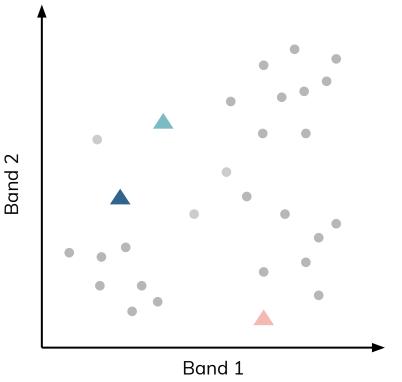
• Pick a number of groups

• Make a guess about where those groups are in feature space

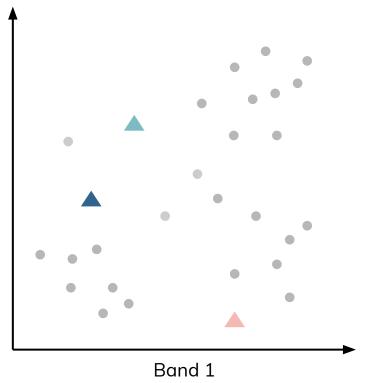


• Pick a number of groups

• Make a guess about where those groups are in feature space

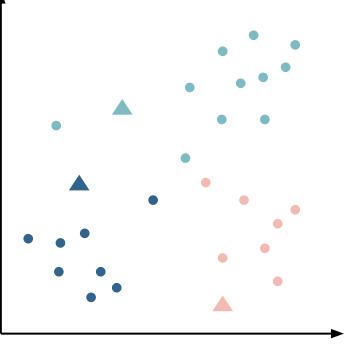


- Make a guess about where those groups are in feature space
- Assign each point to the closest group



• Pick a number of groups

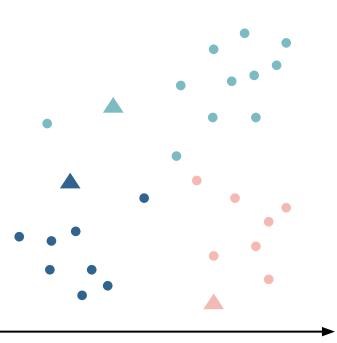
- Make a guess about where those groups are in feature space
- Assign each point to the closest group



Band 1

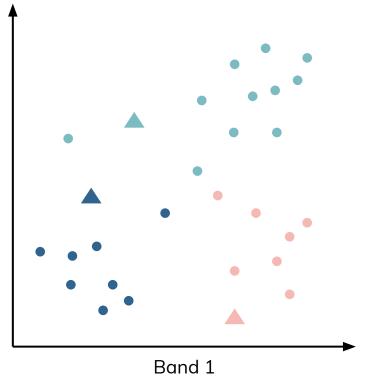
• Pick a number of groups

- Make a guess about where those groups are in feature space
- Assign each point to the closest group
- Move group centers to m better represent groups

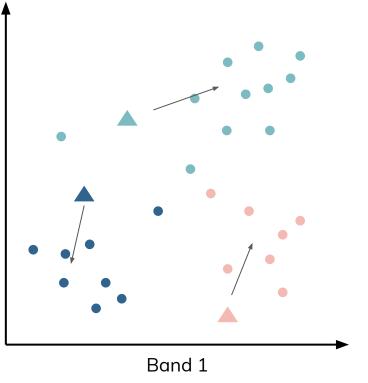


Band 1

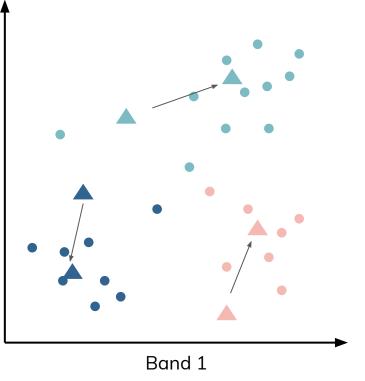
- Make a guess about where those groups are in feature space
- Move group centers to m better represent groups
 - Use the mean!



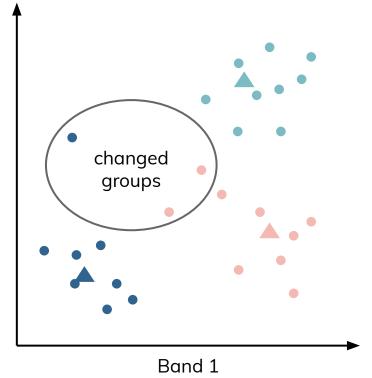
- Make a guess about where those groups are in feature space
- Assign each point to the closest group
- Move group centers to m better represent groups
 - Use the mean!



- Make a guess about where those groups are in feature space
- Assign each point to the closest group
 Move aroup centers to
- Move group centers to better represent groups
 - Use the mean!

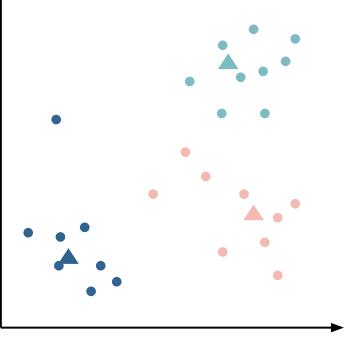


- Make a guess about where those groups are in feature space
- Assign each point to the closest group
- Move group centers to m better represent groups
 - Use the mean!
- Update groups



• Pick a number of groups

- Make a guess about where those groups are in feature space
- Move group centers to m better represent groups
 - Use the mean!
- Update groups
- Keep going until distances are minimized

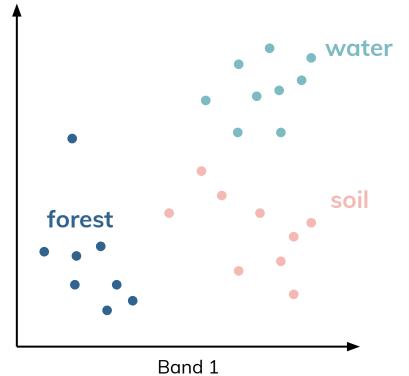


Band 1

How to group pixels into land cover types

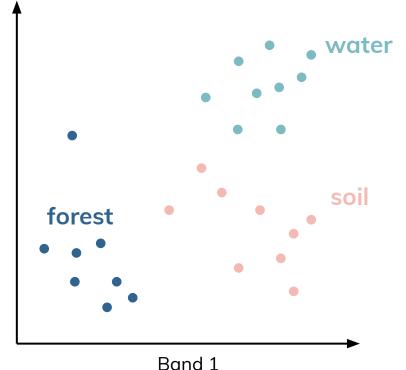
• Pick a number of groups

- Make a guess about where those groups are in feature space
- Move group centers to m better represent groups
 - Use the mean!
- Update groups
- Keep going until distances are minimized
- Figure out what the groups are



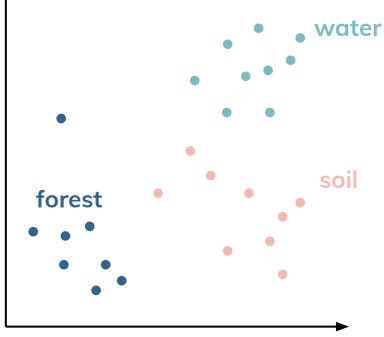
• Pick a number of groups

- Make a guess about where those groups are in feature space
- Assign each point to the closest group
- Move group centers to m better represent groups
 - Use the mean!
- Update groups
- Keep going until distances are minimized
- Figure out what the groups are



• Pick a number of groups

- Make a guess about where those groups are in feature space
- Move group centers to m better represent groups
 - Use the mean!
- Update groups
- Keep going until distances are minimized
- Figure out what the groups are

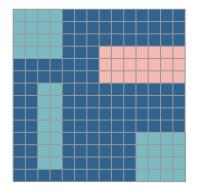


Band 1

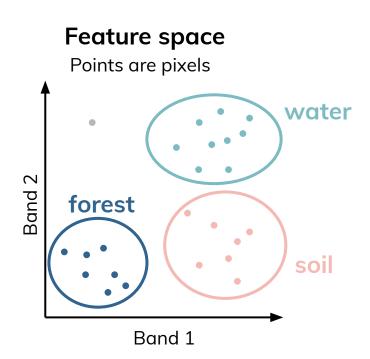
k is the number of groups (or clusters)

clusters are based on the group mean

Geographic space

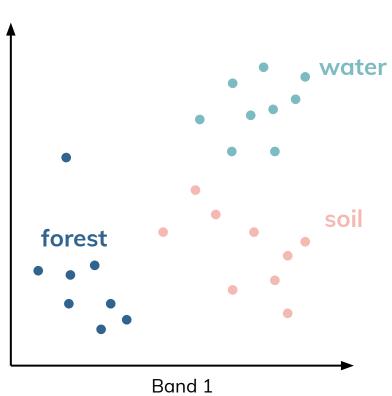


 \leftarrow

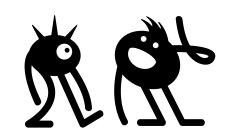


• Pick a number of groups

- Make a guess about where those groups are in feature space
- Assign each point to the closest group
- Move group centers to m better represent groups
 - Use the mean!
- Update groups
- Keep going until distances are minimized
- Figure out what the groups are

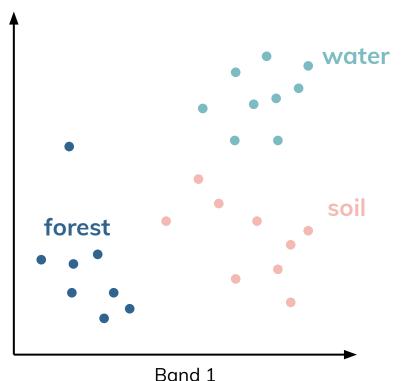


Pros/Cons



• Pick a number of groups

- Make a guess about where those groups are in feature space
- Move group centers to m better represent groups
 - Use the mean!
- Update groups
- Keep going until distances are minimized
- Figure out what the groups are



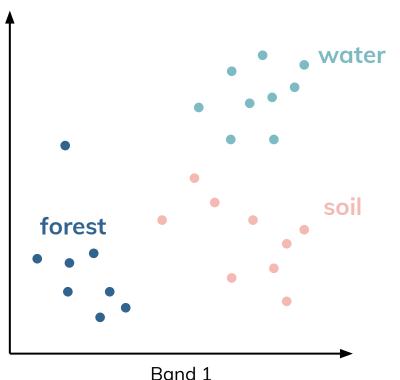
Pros

- Only needed remote sensing data
- Explored how similar different areas are

- Clusters might not always work out this well
- Number of groups was arbitrary
- Starting guess on clusters might impact results
- Needed to figure out what the clusters meant

• Pick a number of groups

- Make a guess about where those groups are in feature space
- Move group centers to m better represent groups
 - Use the mean!
- Update groups
- Keep going until distances are minimized
- Figure out what the groups are



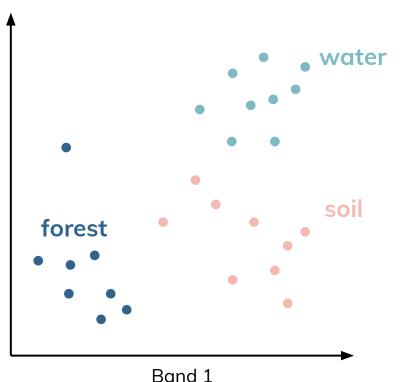
Pros

- Only needed remote sensing data
- Explored how similar different areas are

- Clusters might not always work out this well
- Number of groups was arbitrary
- Starting guess on clusters might impact results
- Needed to figure out what the clusters meant

• Pick a number of groups

- Make a guess about where those groups are in feature space
- Move group centers to m better represent groups
 - Use the mean!
- Update groups
- Keep going until distances are minimized
- Figure out what the groups are



Pros

- Only needed remote sensing data
- Explored how similar different areas are

- Clusters might not always work out this well
- Number of groups was arbitrary
- Starting guess on clusters might impact results
- Needed to figure out what the clusters meant

Image classification

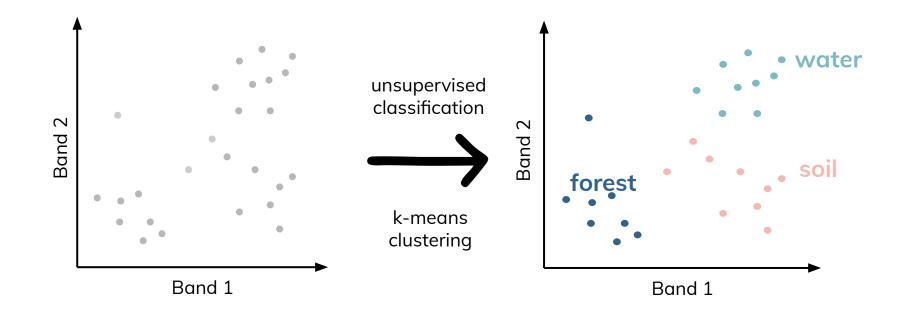
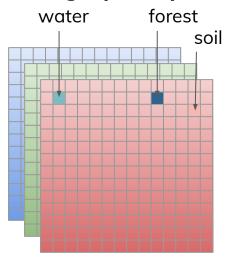


Image classification

Geographic space



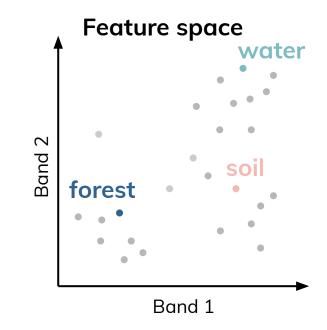
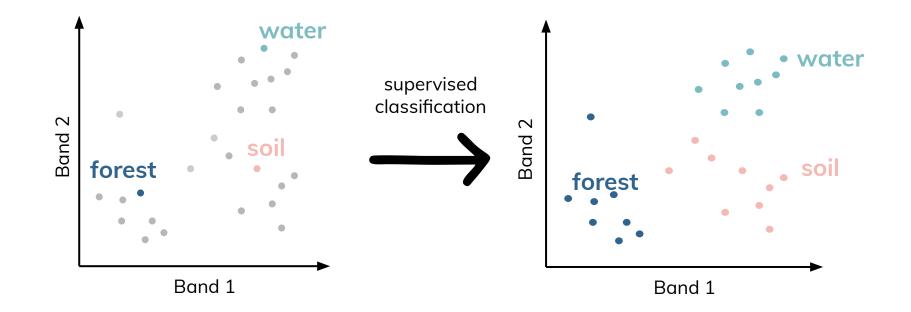
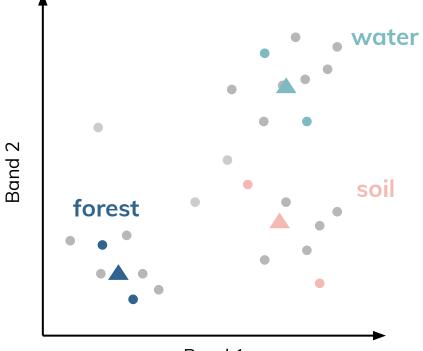


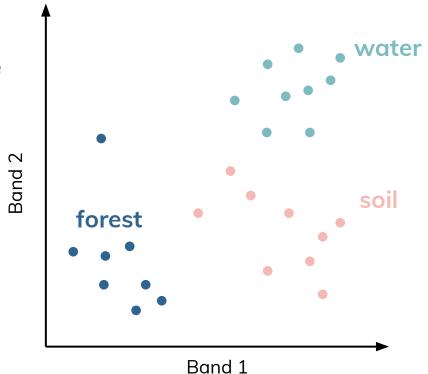
Image classification



• Find means for each group based on known points

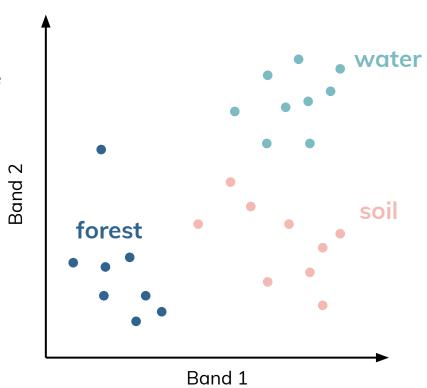


- Find means for each group based on known points
- Assign each point to the closest group



Minimum distance to mean algorithm

- Find means for each group based on known points
- Assign each point to the closest group



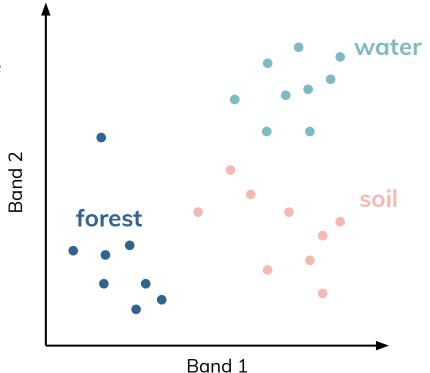
Prosfast/easy

Cons

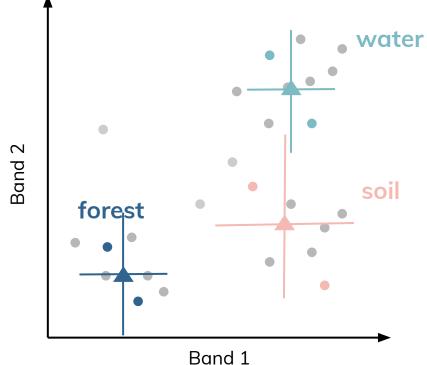
 only uses means, not other statistical differences between classes

Minimum distance to mean algorithm

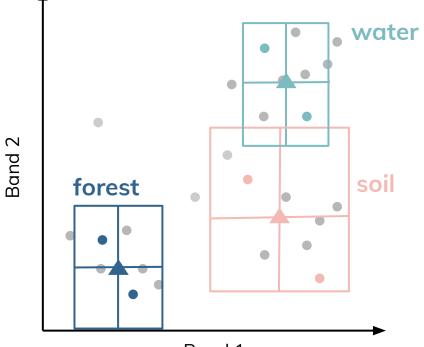
- Find means for each group based on known points
- Assign each point to the closest group



 Find means and standard deviations for each group based on known points

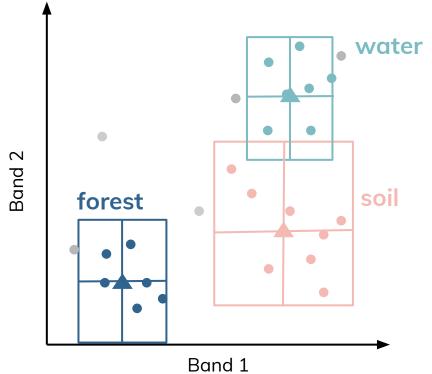


Find means and standard deviations for each group based on known points



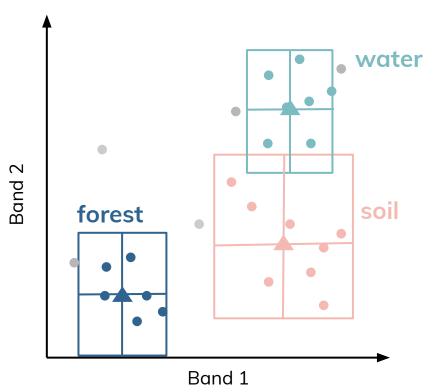
Band 1

- Find means and standard deviations for each group based on known points
- Assign points to groups



Parallelipiped

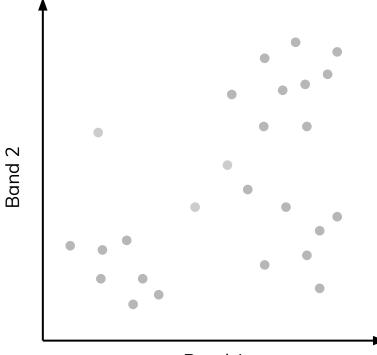
- Find means and standard deviations for each group based on known points
- Assign points to groups



Pros

- fast/easy
- More realistic than just using the mean

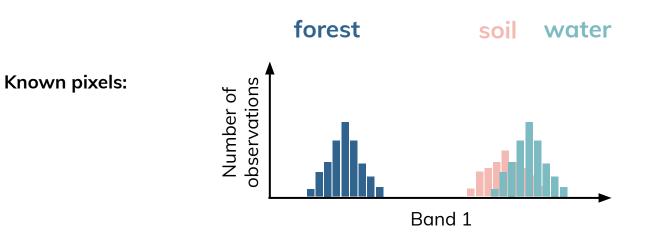
- Unclassified pixels
- Overlapping classes

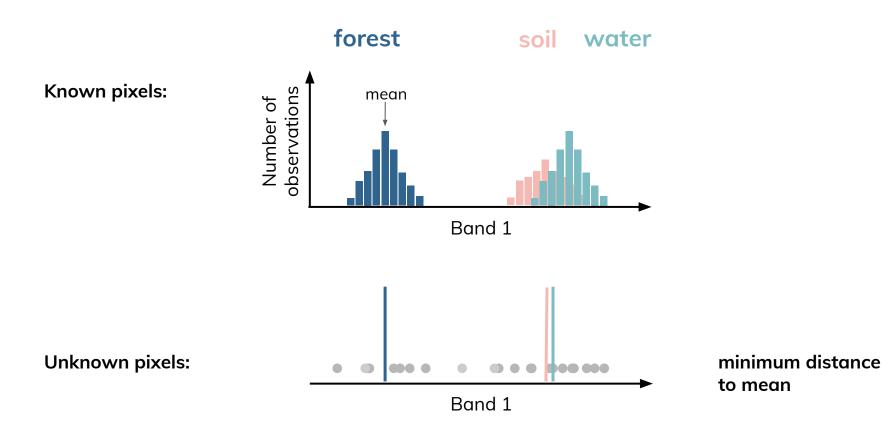


Band 1

Unknown pixels:

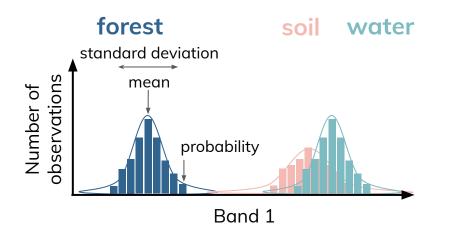
Band 1

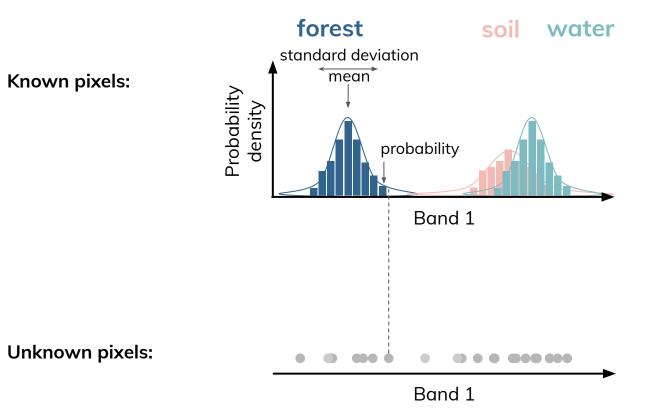


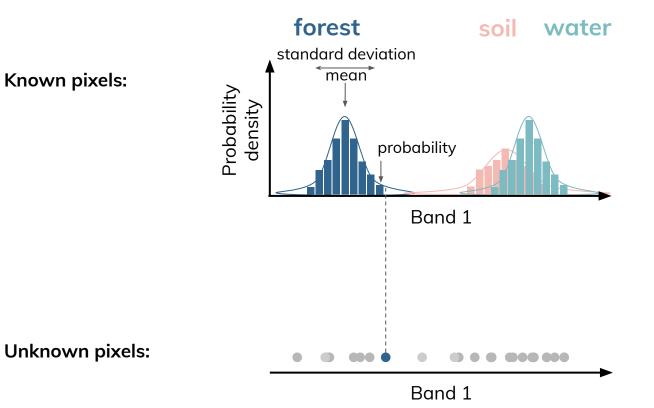


forest soil water standard deviation Known pixels: observations mean Number of Band 1 Unknown pixels: parallelipiped Band 1

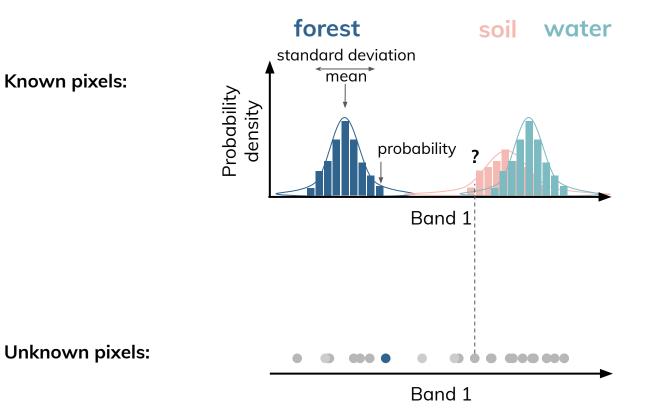
Known pixels:

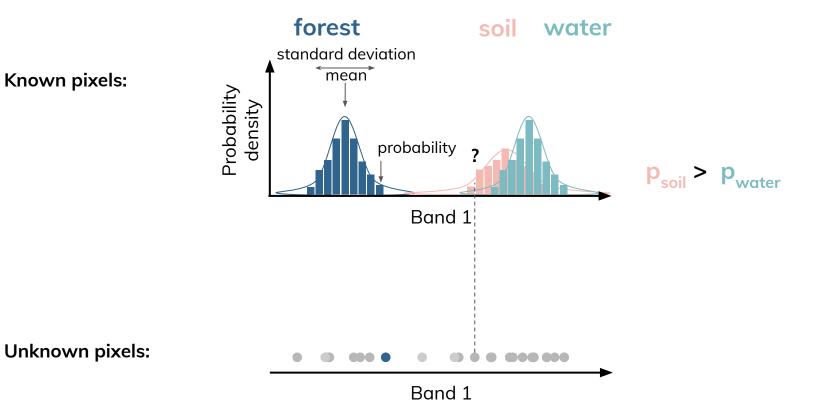


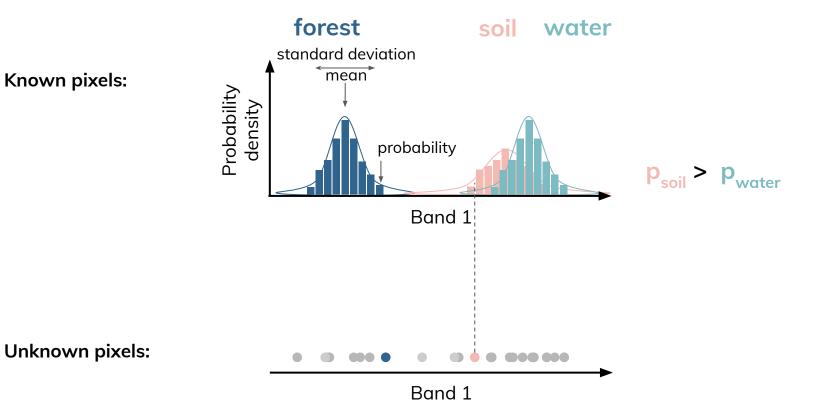


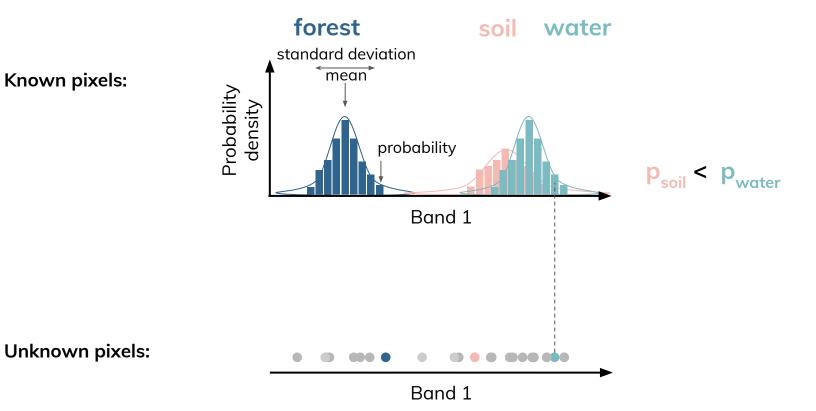


forest soil water standard deviation mean* Known pixels: Probability density probability Band 1 Unknown pixels: 00 000 Band 1



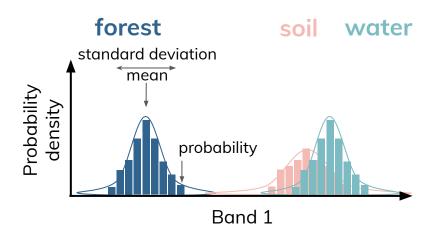


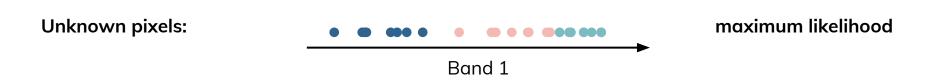




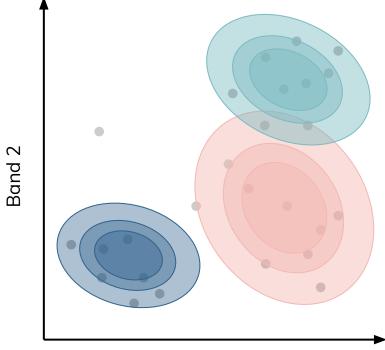
Maximum likelihood

Known pixels:



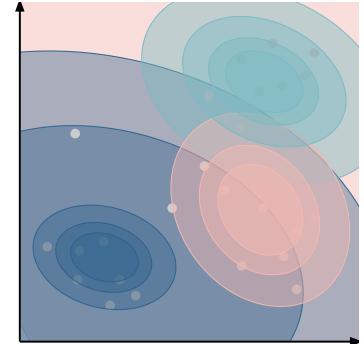


Maximum likelihood



Band 1

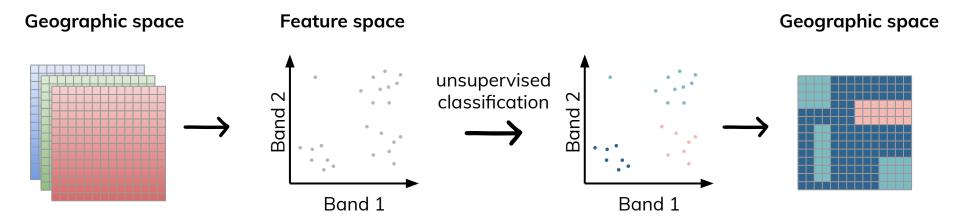
Maximum likelihood



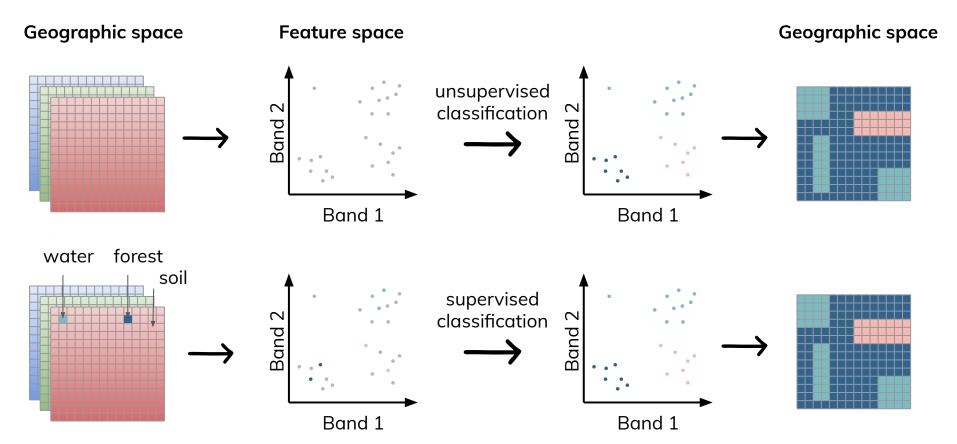
Band 2

Band 1

(un)supervised classification



(un)supervised classification



Classification approaches Supervised \bigcirc Unsupervised

• Algorithm identifies groups of pixels with similar spectra

• Algorithm identifies groups of pixels with similar spectra

- Algorithm identifies groups of pixels with similar spectra
- User assigns meaning to resulting classes

- Algorithm identifies groups of pixels with similar spectra
- User provides examples for desired groupings

- Algorithm identifies groups of pixels with similar spectra
- User assigns meaning to resulting classes
- Bulk of analyst's work comes after the classification process

- Algorithm identifies groups of pixels with similar spectra
- User provides examples for desired groupings
- Bulk of analyst's work comes before the classification process

- Algorithm identifies groups of pixels with similar spectra
- User assigns meaning to resulting classes
- Bulk of analyst's work comes after the classification process
- Pros:
 - No prior knowledge of area required
 - Human error is minimized
 - Relatively fast/easy
 - Unique spectral classes are produced
- Cons:
 - Spectral classes may not represent features on the ground
 - Does not consider spatial relationships
 - Can be time-consuming to interpret
 - Spectral properties may vary over time/images

- Algorithm identifies groups of pixels with similar spectra
- User provides examples for desired groupings
- Bulk of analyst's work comes before the classification process

- Algorithm identifies groups of pixels with similar spectra
- User assigns meaning to resulting classes
- Bulk of analyst's work comes after the classification process
- Pros:
 - No prior knowledge of area required
 - Human error is minimized
 - Relatively fast/easy
 - Unique spectral classes are produced
- Cons:
 - Spectral classes may not represent features on the ground
 - Does not consider spatial relationships
 - Can be time-consuming to interpret
 - Spectral properties may vary over time/images

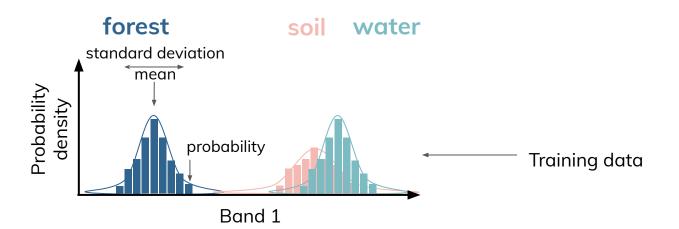
- Algorithm identifies groups of pixels with similar spectra
- User provides examples for desired groupings
- Bulk of analyst's work comes before the classification process
- Pros:
 - Spectral classes represent features on the ground
 - Training areas are reusable
- Cons:
 - Information classes may not match spectral classes
 - Difficulty and cost of selecting training sites

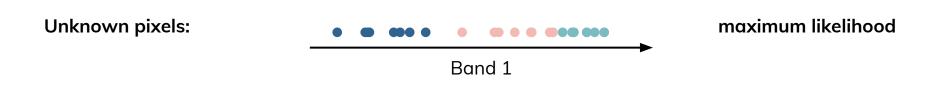
- Algorithm identifies groups of pixels with similar spectra
- User assigns meaning to resulting classes
- Bulk of analyst's work comes after the classification process
- Pros:
 - No prior knowledge of area required
 - Human error is minimized
 - Relatively fast/easy
 - Unique spectral classes are produced
- Cons:
 - Spectral classes may not represent features on the ground
 - Does not consider spatial relationships
 - Can be time-consuming to interpret
 - Spectral properties may vary over time/images

- Algorithm identifies groups of pixels with similar spectra
- User provides examples for desired groupings
- Bulk of analyst's work comes before the classification process
- Pros:
 - Spectral classes represent features on the ground
 - Training areas are reusable
- Cons:
 - Information classes may not match spectral classes
 - Difficulty and coast of selecting training sites

Maximum likelihood

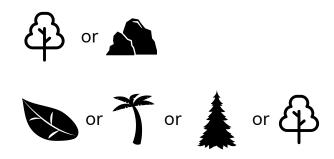
Known pixels:





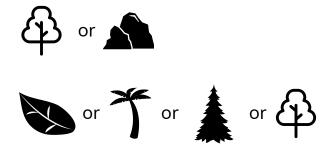
Supervised classification: training data

Classification scheme: \bigcirc or \checkmark



Supervised classification: training data

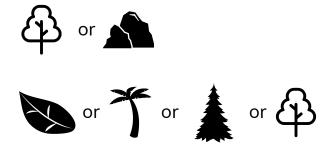
Classification scheme: 3 or 3



Does the resolution match your scheme? (spatial/temporal/spectral/radiometric)

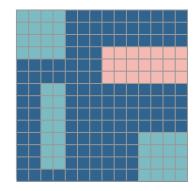
Supervised classification: training data

Classification scheme: \bigcirc or \checkmark

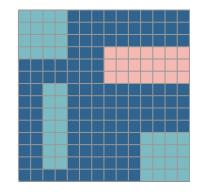


Does the resolution match your scheme? (spatial/temporal/spectral/radiometric)

Does your training data capture the heterogeneity of each class?



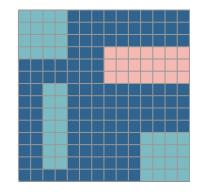
How accurate is this map?



How accurate is this map?

"True answer"

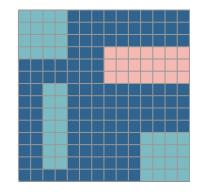
	forest	soil	water
forest			
soil			
water			



How accurate is this map?

"True answer"

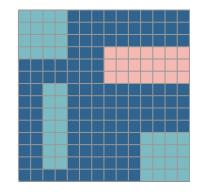
	forest	soil	water
forest	25	0	0
soil			
water			



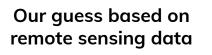
How accurate is this map?

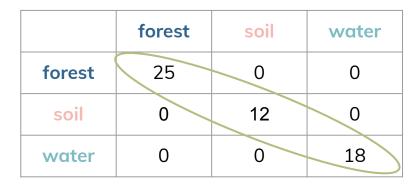
"True answer"

	forest	soil	water
forest	25	0	0
soil	0	12	0
water	0	0	18



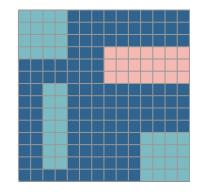
How accurate is this map?



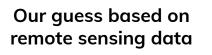


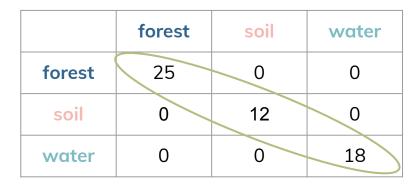
"True answer"

Accuracy = sum of correct matches ÷ total number of cells



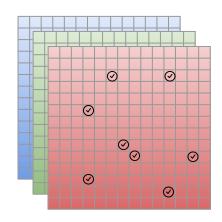
How accurate is this map?

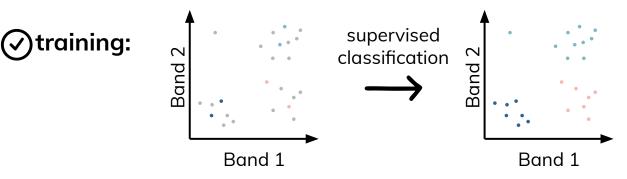




"True answer"

Accuracy = sum of correct matches ÷ total number of cells





8	\odot	\odot
0		
8	 Ø 	\otimes
0	Ø	Ø
	\otimes	\odot

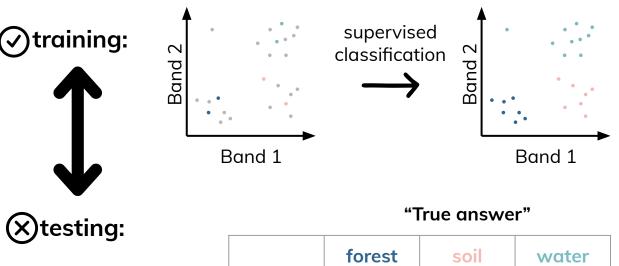
Xtesting:

Our guess based on remote sensing data

	forest	soil	water
forest			
soil			
water			

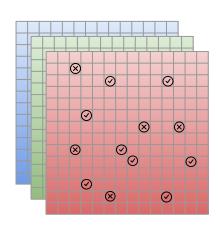
"True answer"

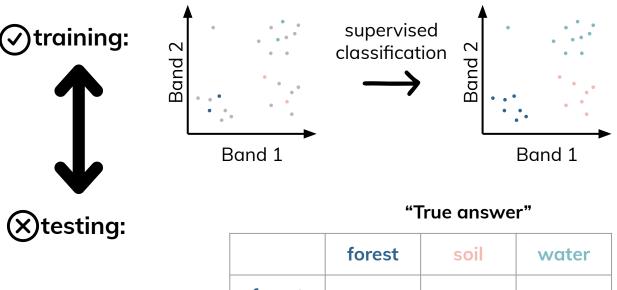




	forest	soil	water
forest			
soil			
water			

Cross-validation



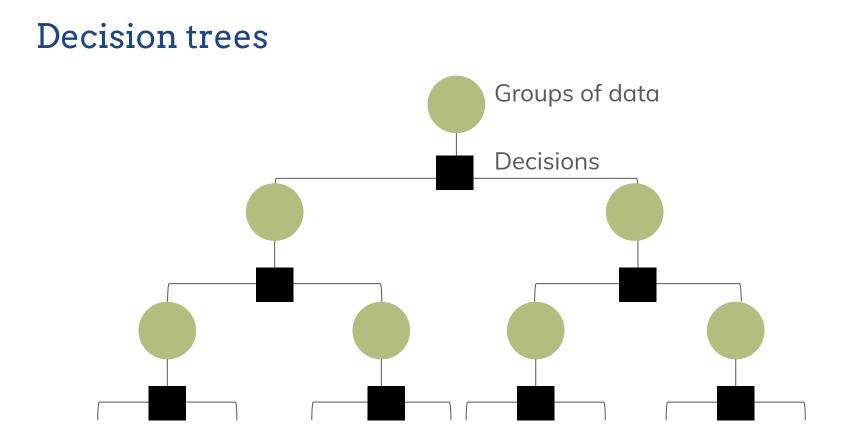


	forest	soil	water
forest			
soil			
water			

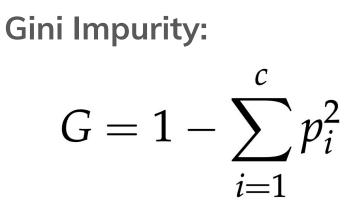
Summary

- To classify objects, we try to separate them based on spectral features
- Lots of different ways to do this!
 - Unsupervised approaches don't require any information upfront, but is hard to interpret
 - Supervised approaches are easier to interpret, but require information upfront

Today's classification task



Classification and Regression Trees (CART) algorithm

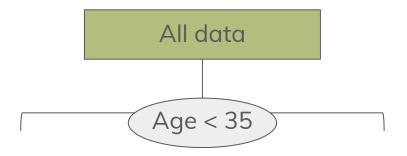


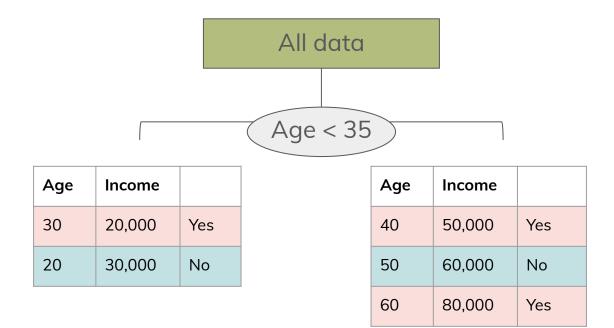
c is the number of classes

 \boldsymbol{p}_i is the probability of a randomly chosen element in the node being labeled as class \boldsymbol{i}

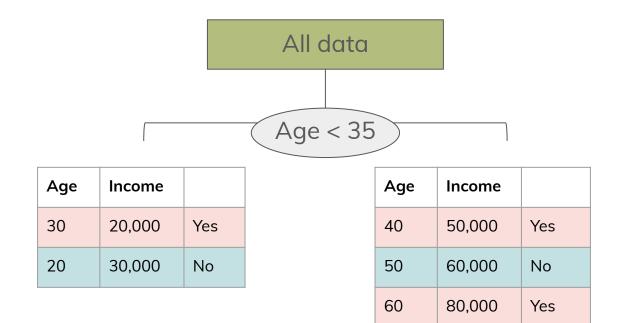
Classification and Regression Trees (CART) algorithm

Age	Income	Buy?
30	20,000	Yes
40	50,000	Yes
20	30,000	No
50	60,000	No
60	80,000	Yes



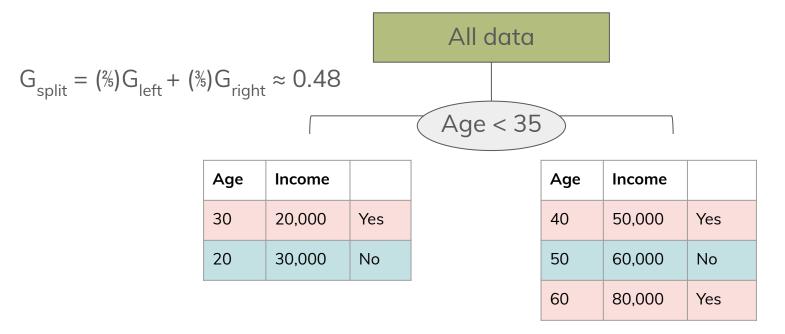


$$G_{\text{left}} = 1 - (\frac{1}{2})^2 - (\frac{1}{2})^2 = 0.5$$



$$G_{\text{left}} = 1 - (\frac{1}{2})^2 - (\frac{1}{2})^2 = 0.5$$

$$G_{right} = 1 - (\frac{2}{3})^2 - (\frac{1}{3})^2 \approx 0.444$$



$$G_{\text{left}} = 1 - (\frac{1}{2})^2 - (\frac{1}{2})^2 = 0.5$$

$$G_{right} = 1 - (\frac{2}{3})^2 - (\frac{1}{3})^2 \approx 0.444$$

Big ask!

ESCIs due December 8!