
EDS 223: Geospatial Analysis & Remote Sensing
Week 9

USGS via Unsplash



Welcome!

● Assignments
○ Assignment 4 due December 9

■ Sorry for the typos! Will distribute revised copy
○ Portfolio due December 15

■ Come to office hours for help/guidance
● Next week

○ Active remote sensing
○ Course wrap-up

● Course-evaluations



Vegetation indices

NDVI = (NIR - red)
 (NIR + red)

 

NMDI = (NIR - SWIR)
 (NIR + SWIR)

 



Factors controlling leaf reflectance

Source: Jensen 2007



Image classification

Source: NASA, Leah Hustak
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Classification scales

Source: Jensen 2007
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Supervised classification: training data

Classification scheme: or

or or or

Does the resolution match your scheme? (spatial/temporal/spectral/radiometric)

Does your training data capture the heterogeneity of each class?
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Summary

● To classify objects, we try to separate them based on spectral features
● Lots of different ways to do this!

○ Unsupervised approaches don’t require any information upfront, but is hard to interpret
○ Supervised approaches are easier to interpret, but require information upfront
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Classification and Regression Trees (CART) algorithm

Gini Impurity:

c is the number of classes
pi is the probability of a randomly chosen element in the node being 
labeled as class i
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Big ask!

ESCIs due December 8!


